1 Photosynthesis The capture of light energy by living organisms.- 1.1 Photosynthesis in historical context.- 1.2 Photosynthesis in a comparative context.- 2 The Organisation of Photosynthetic Structures.- 2.1 Biological membranes.- 2.1.1 Membrane lipids.- 2.1.2 Membrane proteins.- 2.2 The membranes of chloroplasts and photosynthetic bacteria.- 2.3 Pigments.- 2.3.1 Spectroscopy.- 2.3.2 Chlorophylls, phycobilins and carotenoids.- 2.4 Pigment-protein complexes.- 2.5 Antenna complexes.- 2.5.1 Chlorosomes.- 2.5.2 Phycobilisomes.- 2.5.3 The antenna of the purple bacteria.- 2.5.4 Complexes in the green plant chloroplast.- 2.6 Reaction-centre complexes.- 2.6.1 Green plants possess two types of photosystem.- 2.6.2 Purple bacteria possess the simplest reaction centre.- 2.6.3 Green plants: PSII resembles purple bacteria.- 2.6.4 Green plants: PSI-more chlorophyll attached to fewer proteins.- 2.6.5 Green sulphur bacteria.- 2.6.6 Heliobacterrium chlorum.- 2.7 Summary.- 3 Primary Photophysics Times from 1 fs to 100 ps.- 3.1 Light absorption: formation of excited states of molecules.- 3.2 Possible fates of excited states.- 3.2.1 Fluorescence.- 3.2.2 Excitation energy transfer.- 3.2.3 Radiationless deactivation.- 3.3 Antenna chlorophylls in chloroplasts.- 3.3.1 PSI.- 3.3.2 PSII.- 3.3.3 Excitation migration.- 3.3.4 Variables affecting the fluorescence yield.- 3.4 Photochemical charge separation in reaction centres.- 4 Electron Transfer Within Reaction-Centre Complexes Times from 4 ps to 0.15 ms.- 4.1 Redox potentials.- 4.1.1 Cytochromes.- 4.1.2 Chlorophyll.- 4.2 Quinones-the electron acceptors for the reaction centre of PSII in green plants and purple bacteria.- 4.2.1 Fluorescence induction.- 4.3 Ferredoxins-the electron acceptors in the reaction centres of green plant PSI and green sulphur bacteria.- 4.3.1 Electron transport within PSI.- 4.3.2 Ferredoxin is the diffusible electron acceptor.- 4.3.3 The RC of green sulphur bacteria resembles PSI of green plants.- 4.4 Electron donors.- 4.4.1 Four families of C-cytochromes.- 4.4.2 Purple bacteria.- 4.4.3 Water is the ultimate electron donor to PSII in green plants.- 4.4.4 Plastocyanin is the electron donor to PSI in green plants.- 4.5 Summary.- 5 Electron Transport by Diffusible Molecules Times from 1 ms to 20 ms.- 5.1 The ubiquitous cytochrome bc complex: the quinol cytochrome c reductase.- 5.2 Patterns of electron transport: cyclic or non-cyclic.- 5.2.1 Purple bacteria.- 5.2.2 Chloroplasts.- 5.2.3 Green sulphur bacteria.- 5.3 Summary.- 6 The Production of ATP Times from 1 s to 100 s.- 6.1 Electron transport generates an H + -ion gradient.- 6.2 A proton gradient has both electric and pH components.- 6.3 How much work can be stored by the proton gradient?.- 6.4 The proton gradient drives ATP formation.- 6.4.1 How much energy is required for ATP synthesis?.- 6.4.2 The ATP synthase or F-ATPase.- 6.5 The PMF controls the rate of electron transport.- 6.6 Reverse electron transport.- 7 Metabolic Processes and Physiological Adjustments Seconds to hours.- 7.1 Ferredoxin-dependent reactions.- 7.2 Carbon dioxide fixation.- 7.2.1 The reductive citrate cycle.- 7.2.2 The reductive pentose cycle.- 7.2.3 Photorespiration.- 7.2.4 C4 photosynthesis.- 7.2.5 Chloroplasts and respiration.- 7.3 Chloroplast-cytoplasm transport.- 7.3.1 The products of photosynthesis: starch and sucrose.- 7.3.2 Guard cells.- 7.3.3 Carbon dioxide accumulation.- 7.4 Molecular cell biology.- 7.4.1 Genes exist in the cell nucleus and in organelles.- 7.4.2 The control of chloroplast synthesis.- References and Further Reading.