Section 1 Movement of Genetic Information from the Environment to the Plant.- 1 Viruses.- 2 DNA Flux Across Genetic Barriers: The Crown Gall Phenomenon.- I. Introduction: Agrobacterium tumefaciens, a Natural Instance of Genetic Engineering.- A. General Introduction.- B. In Search of the TIP.- C. A More Precise Picture of the T-DNA.- II. The T-DNA Is Designed to Be Functional in the Plant Cell.- A. T-DNA Gene Structure and Its Expression in Plant Cells.- B. Functional Organization of the T-DNA.- C. Agrobacterium rhizogenes, an Analogous System.- D. Some Speculations About the Origin of the T-DNA.- III. Transfer and Integration of the T-DNA in the Plant Cell Nucleus.- A. Agrobacterium Holds the Key.- B. Early Interactions Between Agrobacterium and Plant Cells.- C. T-region and T-DNA Border Sequences.- D. The 25-bp Repeat Sequence.- E. T-DNA Integration Compared to Other Mobile Elements.- F. Crossing the Cellular and Genetic Barriers.- G. T-DNA Stability.- H. Domestication of the Ti Plasmid.- IV. Conclusion.- V. Acknowledgements.- VI. References.- Section II Movement of Genetic Information Between the Plant Organelles.- 3 Movement of Genetic Material Between the Chloroplast and Mitochondrion in Higher Plants.- I. Inter-Organelle DNA Transposition.- II. Sequences Homologous to Chloroplast DNA in Higher Plant Mitochondrial Genomes.- A. The Genome of Zea mays.- B. Other Higher Plant Species.- III. Functionality of the Chloroplast Pseudogene Sequences in the Mitochondrial Genome.- IV. Mechanism of Sequence Transfer.- V. Rate of Sequence Transposition and Selection of Novel Genotypes.- VI. References.- 4 Movement of Genetic Information Between the Chloroplast and Nucleus.- 5 Movement of Genetic Information Between Plant Organelles: Mitochondria-Nucle.- I. Introduction.- II. Organisms Exhibiting Common Mitochondrial and Nuclear DNA Sequences.- III. Common Mitochondrial and Nuclear DNA Sequences in Maize.- IV. Concluding Remarks.- V. References.- Section III Movement of Genetic Information Within Plant Organelles.- 6 Supernumerary DNAs in Plant Mitochondria.- I. Diversity of Genetic Organization in Plant Mitochondrial DNA.- II. Structure of Plasmid-like DNAs.- III. Reversion to Fertility in cms-S.- IV. A. The Diversity Paradox for Maize Mitochondrial DNA.- B. Evolutionary Mechanisms in Maize mtDNA.- V. References.- 7 Plant Mitochondrial DNA: Unusual Variation on a Common Theme.- I. Introduction.- II. The "Extra" DNA in Plant Mitochondria.- A. The Number of Translation Products Does Not Vary with Genome Size.- B. The Sequence Complexity of Mitochondrial RNA Is Large.- C. Are There More Mitochondrial Genes in Plants than in Other Organisms?.- D. Does Mitochondrial DNA Have a Sequence-Independent Function?.- E. Is Mitochondrial DNA Selfish or Ignorant?.- F. Interorganellar DNA.- G. Why Is the Mitochondrial Genome so Large?.- III. Circular Mitochondrial DNA.- A. A Brief History.- B. Circles in Native Plant Tissue.- C. Circles in Cultured Cells.- D. What Do the Circles Represent?.- E. Evidence for a Circular Mitochondrial Genome.- 1. Site-Specific Versus General Recombination.- 2. Circular Molecules Are Not Common in Mitochondrial DNA from Whole Plant Tissue.- 3. Circles and mtDNA Replication.- 4. Is the Genome Really Circular?.- 5. Is Circularity of the Genome Important for Mitochondrial Function?.- IV. Summary and Conclusions.- A. The "Extra" DNA.- B. Circles.- V. References.- 8 Repeated Sequences and Genome Change.- I. Introduction.- II Concerted Evolution.- III. Transposable Elements and Dispersed Repeats.- IV. Repeated DNA Flux and Species Divergence.- V. Concluding Remarks.- VI. References.- 9 Sequence Variation and Stress.- I. Introduction.- II. Environmentally Induced DNA Changes in Flax.- III. Nuclear DNA Variation.- IV. Analysis of Nuclear DNA.- V. Ribosomal DNA Variation.- VI. 5 S DNA Variation.- VII. Satellite DNA.- VIII. Other Repetitive Sequences.- IX. Somaclonal Variation.- X. Instabilities in Hybrid Plants.- XI. Discussion.- XII. References.- 10 The Activation of Maize Controlling Elements.- I. Introduction.- II. Unstable Mutations in Maize.- A. Genetic Loci.- B. General Considerations.- C. Two-Element Systems in Maize.- D. Controlling Element Families.- III. Induction of Controlling Element Activity.- A. Behavior of Broken Chromosomes.- B. Unorthodox Type of Chromosome Rearrangements in BFB Plants.- C. Burst of Mutability Following Chromosome Breakage.- D. Examples of Controlling Element Activation by BFB Cycles.- IV. Biology of Ac/Ds Elements.- A. Chromosome Breakage at Ds.- B. The Ac/Ds Family of Transposable Controlling Elements.- C. Mutator Function of Ac.- D. Molecular Biology of Ac/Ds.- E. Relationship Between Autonomous and Non-autonomous Components.- F. DsElements That Are Structurally Related to Ac.- G. DsElements Capable of Chromosome Dissociation.- H. Type I Elements.- I. Transposition of Ac from a Gene Locus.- V. Cryptic and Active Forms of Ac/Ds Elements.- A. General Considerations.- B. Cryptic Ac-like DNA.- C. Differences Between Active and Cryptic Copies of Ac.- D. Cycling Activity of the Mutator Component of Ac.- VI. Concluding Remarks.- VII. Acknowledgements.- VIII. References.- 11 Somaclonal Variation: The Myth of Clonal Uniformity.- I. Introduction.- II. In Vitro Culture and Genetic Flux.- A. Tissue Culture Instability.- 1. Chromosomal Instability.- 2. Morphological Changes.- 3. Biochemical Changes.- B. Somaclonal Variation.- 1. Ubiquity of Somaclonal Variation.- 2. Maize.- 3. Wheat.- 4. Tomato.- 5. Sugarcane.- 6. Potato.- III. Factors Influencing Somaclonal Variation.- A. Sexual Versus Asexual Species.- B. Preexisting Versus Culture Induced Variation.- C. Genotype.- D. Explant Type and Culture Mode.- E. Duration of Culture.- IV. Origin of Tissue Culture Instability and Somaclonal Variation.- A. Chromosomal Aberrations.- B. DNA Amplification.- C. Transposable Elements.- D. Somaclonal Variation-Analysis and Understanding.- V. Benefits and Disbenefits of Somaclonal Variation.- VI. Conclusions.- VII. Acknowledgements.- VIII. References.