I Fundamentals.- Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations.- 1. Introduction.- 2. Basic Properties of Josephson Junctions.- 2.1 The DC and the AC Josephson Effect.- 2.2 Circuit Implications.- 2.3 Damping Equivalent.- 3. Classical Dynamics of the Quantum Phase Shift in Pair- and Quasiparticle Tunnel Junctions.- 3.1 Quantum Phase Self-Coupling.- 3.2 Tunnel Junction Admittance.- 3.3 Special Cases.- 4. Macroscopic Quantum Phenomena Based on Josephson Tunnel Dynamics.- 4.1 Macroscopic Quantum Tunnelling.- 4.2 Quantum Charge Oscillations.- 4.2.1 Bloch Oscillations.- 4.2.2 Single-Electron Tunnelling (SET).- Modelling of Resistive Networks for Dispersive Tunnel Processes.- 1. Introduction.- 2. Classification of Different Essential Processes.- 3. The Macroscopic Dynamical Structure of Superconductive Tunnel Diodes.- 4. The Mapping of the Dynamical Structure on Technical Equivalent Systems.- 4.1 Mechanical Analogies.- 4.2 Electrical Equivalent Circuits.- 4.2.1 Circuit Model with Infinite Degree of Freedom.- 4.2.2 Circuit Model with Finite Degree of Freedom.- 5. Conclusion and Outlook.- Electromagnetic Properties of Superconductors Exact Solution of the Mattis-Bardeen Equations for Bulk Material and Thin Films.- 1. Introduction.- 2. Bulk Superconductors.- 2.1 Theories of the Normal and Anomalous Skin Effect.- 2.2 Solution of the Mattis-Bardeen Kernel K(q).- 2.3 Extreme Anomalous Skin Effect.- 2.4 Surface Impedance.- 3. Applications to Bulk Superconductors.- 3.1 Other Calculations.- 3.2 Microwave Region.- 3.3 Far Infrared Region.- 4. Thin Films.- 4.1 Theoretical Treatment.- 4.2 Complex Conductivity.- 5. Applications to Thin Films.- 5.1 Transition to Bulk Superconductors.- 5.2 Transmission Spectra.- 6. Conclusion.- II Sensitive Detectors.- High-Tc Josephson Contacts and Devices.- 1. Introduction.- 2. Technological Aspects.- 2.1 Thin Film Preparation.- 2.2 Microstructuring Procedures.- 3. Tunnel Contacts.- 4. Microbridges.- 4.1 Theoretical Model.- 4.2 Experimental Results.- 5. High-Tc SQUIDs.- 5.1 Single Layer Nb3Ge-DC-SQUIDs.- 5.2 Nb3Ge Multi-Layer Technique.- 5.3 Nb3Ge Multi-Layer DC-SQUID.- 6. High Frequency Applications.- 6.1 Microwave Driven Switching Device.- 6.2 Nanobridges as Relaxation Oscillators.- 6.3 FM-Read-Out Scheme for DC-SQUIDs.- 7. Emerging Developments: SQUIDs at 77 Kelvin.- Biomagnetic Sensors.- 1. Introduction.- 2. The Biomagnetic Method.- 3. Current Dipole Model.- 4. Detection Coil Configurations.- 4.1 Wire-Wound Flux Transformers.- 4.2 Thin Film Flux Transformers.- 4.3 Multisensor Configurations.- 5. Sensor Periphery.- 5.1 Dewars.- 5.2 Shielded Rooms.- 6. Possible Implementation of High-Tc Superconductors in Biomagnetic Instrumentation.- 7. Conclusion.- Josephson Junction as a Spectral Detector.- 1. Introduction.- 2. Current and Voltage Sensitivity.- 2.1 Autonomous Junction.- 2.2 Impressed RF Current.- 2.3 Oscillation Linewidth.- 2.4 External Circuit.- 3. Noise Equivalent Power.- 4. Spectrometer with Wide Frequency Span.- 4.1 Theory.- 4.2 Experiments.- 5. Outlook.- Superconducting Tunnel Junctions for Radioastronomical Receivers.- 1. Millimeter and Submillimeter Radiation from the Interstellar Medium.- 2. Description of Receivers for Radio Astronomy.- 2.1 Direct Detectors.- 2.2 Heterodyne Detection.- 3. The Quasiparticle and the Josephson Current in SIS Tunnel Junction.- 4. Fabrication and Properties of SIS and SIN Junctions.- 4.1 Lead Alloy Junctions.- 4.2 Refractory Metal Junctions.- 5. Quasiparticle Direct Detectors.- 5.1 Responsivity and Noise Equivalent Power.- 5.2 Frequency Limitation.- 5.3 Possible Gain Mechanism.- 6. Classical Mixing with the Schottky Diode.- 7. Quantum Mixing with the SIS Junction.- 7.1 Theoretical and Experimental Results of Quasipartide Mixing.- 7.2 Realization of Quasipartide Heterodyne Receivers for Radioastronomical Observations.- 7.3 Upper Frequency Limit.- 8. Mixing with SIN Junctions.- 9. Outlook for Quasiparticle Tunnel Junctions of the High-Tc Superconductor.- Low-Temperature Scanning Electron Microscopy of Superconducting Thin Films and Tunnel Junctions.- 1. Introduction.- 2. Electron Beam as a Local Heat Source.- 3. Spatial Structure in Superconducting Thin Films.- 4. Inhomogeneous Quasiparticle Tunneling.- 5. Inhomogeneous Pair Tunneling.- 6. Vortex States and Trapped Flux Quanta in Tunnel Junctions.- 7. Cryoelectronic Circuits and Tunnel Junction Arrays.- 8. Applications to Thin Films of High-Tc-Super conductors.- III Precision Metrology.- Josephson Series Array Potentiometer.- 1. Introduction.- 2. Circuit Design.- 3. Fabrication of the Circuits.- 4. Measuring System and Precision of the Standard Instrument.- 5. Design of an Integrated Potentiometer.- 6. The Use of High Critical Temperature Superconductors.- Cryogenic Current Comparator Metrology.- 1. Introduction.- 2. Theory and Operation of Cryogenic Current Comparators.- 2.1 Basic Principle.- 2.2 Practical Realizations of Cryogenic Current Comparators.- 2.3 Ratio Error of a Cryogenic Current Comparator.- 2.4 Optimization of the Signal-To-Noise Ratio.- 3. Resistance Ratio Measurements.- 3.1 Basic Principle.- 3.2 Practical Realizations.- 3.2.1 Deflection Method.- 3.2.2 Balance Method.- 3.3 Measurement of Quantized Hall Resistances and Establishment of a Resistance Scale.- 4. Future Developments.- Fast SQUID Pseudo Random Generators.- 1. Introduction.- 2. Principles of the Generation of Digital Random Noise.- 2.1 The Continuous Process of Generation.- 2.2 The Discrete Process of Generation.- 2.3 Pseudo-Random Noise.- 2.4 Synthetic Noise Sources for RF Frequencies.- 3. Superconducting Shift Registers for the Generation of Random Noise.- 3.1 Dynamics of a Single Josephson Element.- 3.2 Switching Performance of a SQUID.- 3.3 The Flux Shuttle.- 3.4 The Feedback Logic.- 3.5 Realization of a fast SQUID Shift Register.- 3.6 Modifications Using High Tc Superconductors.