Developments and Applications In Memoriam Eshel Bresler (1930-1991)
edited by David Russo, Gedeon Dagan.
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
(xxii, 306 pages 103 illustrations)
Advanced series in agricultural sciences, 20.
Approaches.- 12.2.2 Non-Scaling Approaches.- 12.2.3 Inverse Modeling Approaches of Transient Flow.- 12.2.4 Outline of the Present Study.- 12.3 Simulation Experiments.- 12.3.1 Numerical Infiltration-Evaporation Experiment on 32 Bare-Soil Columns.- 12.3.2 Inverse Modeling Approach on Bare-Soil Columns.- 12.4 Validation.- 12.5 Validation of the Water Balance of Grass.- 12.6 Conclusions.- References.- 13 Impacts of Vertical Heterogeneity on Simulated Water Flow in Hawaiian Basaltic Saprolite: Relation to Recharge.- 13.1 Introduction.- 13.2 Physical Setting of Study Area.- 13.3 Methodology.- 13.3.1 Estimates of K(h) from Water Characteristic Data.- 13.3.2 Rainfall and Evaporation Data.- 13.3.3 Variability Saturated Zone Simulation Model.- 13.3.4 Hydraulic Properties and Stratigraphy of the Soil/Saprolite.- 13.3.5 Simulation Scenarios.- 13.4 Results.- 13.4.1 Time Series: Infiltration, Drainage and Water Content.- 13.4.2 Pressure Head Profiles for Extreme Periods.- 13.4.3 Profiles of Pressure Exceedence.- 13.5 Discussion.- 13.6 Conclusions.- References.- 14 Estimating Infiltration at Waste Sites: Methodology Development.- 14.1 Introduction.- 14.2 Methodology and Assumptions.- 14.2.1 Estimation of the Parameters.- 14.2.2 Calculations for Steady-State Flow.- 14.2.3 Calculations for Nonsteady Flow.- 14.3 Results.- 14.3.1 Estimating Surface Recharge Flux by Calibration with Measured Values of Saturation.- 14.3.2 Cumulative Probability of Saturation.- 14.3.3 Probability of Ponding and of Fluxes for q < R.- 14.3.4 Expected Values of Flux.- 14.3.5 Expected Values of Saturation and Flux at z = 1 m for Non Steady Infiltration.- 14.4 Summary.- References.- 15 Irrigation Scheduling Considering Soil Variability and Climatic Uncertainty: Simulation and Field Studies.- 15 Introduction.- 15.2 Theoretical Considerations.- 15.2.1 Crop Yield Model.- 15.2.2 Soil-Water Balance.- 15.2.3 Stochastic ETp Model.- 15.2.4 Mathematical Programming (Optimization).- 15.2.4.1 Irrigation Scheduling in a Homogeneous Field.- 15.2.4.2 Irrigation Scheduling in a Heterogeneous Field.- 15.3 Materials and Methods.- 15.3.1 Simulation Study.- 15.3.2 Field Study.- 15.3.3 Stochastic ETp Model for the Study Site.- 15.3.4 Irrigation Scheduling Scheme.- 15.4 Results and Discussion.- 15.4.1 Simulation Study - The Effect of Seasonal Irrigation Amount on Crop Yield.- 15.4.2 Field Experiment.- 15.4.2.1 Water Balance and Crop Yield.- 15.4.2.2 ETp Predictions.- 15.4.2.3 The Irrigation Schedule.- 15.5 Summary and Conclusions.- References.- 16 Use of Geostatistics in the Description of Salt-Affected Lands.- 16.1 Introduction.- 16.2 Geostatistical Analyses.- 16.2.1 Pseudo Cokriging.- 16.2.2 Disjunctive Kriging.- 16.3 Examples.- 16.3.1 Estimation of NO3 Using Cokriging with EC and Ca as Auxiliary Variables.- 16.3.2 Managing Soil EC in Agricultural Fields.- 16.3.2.1 The Sample Correlation Function.- 16.3.2.2 Estimation.- 16.3.2.3 Conditional Probability.- 16.4 Summary and Conclusions.- References.
The Contributions of Eshel Bresler to Soil Science.- List of Publications.- I Stochastic Modeling of Flow and Transport in Unsaturated Soil at Field Scale.- 1 The Bresler-Dagan Model of Flow and Transport: Recent Theoretical Developments.- 1.1 Introduction.- 1.2 The Assumptions and the Main Results of the Original BD Model.- 1.3 The Effect of Local Dispersion.- 1.4 Unsteady Flow (Infiltration and Redistribution) and Transport.- 1.5 Transport of Reactive Solutes in Heterogeneous Fields.- 1.6 Sensitivity Analysis of Crop Yield in a Heterogeneous Field.- 1.7 Solute Flux in Heterogeneous Soils.- 1.8 Mass Arrival of Sorptive Solute into the Groundwater.- 1.9 Validity of One-Dimensional Approximation for Infiltration in Heterogeneous Soils.- References.- 2 Field-Scale Solute Flux Through Macroporous Soils.- 2.1 Introduction.- 2.2 Transport Model.- 2.3 Travel Time PDF.- 2.4 Illustration of Results.- 2.5 Discussion and Conclusions.- References.- 3 Towards Pore-Scale Analysis of Preferential Flow and Chemical Transport.- 3.1 Scales of Preferential Flow.- 3.2 Immobile Water.- 3.3 Old Water - New Water.- 3.4 Subsurface Transport Investigations at Oak Ridge, Tennessee.- 3.5 Pathlength-Supply Hypothesis.- 3.6 Percolation Theory.- 3.7 Percolation Modeling.- 3.7.1 Hydraulic Conductivity and Dispersion Coefficient.- 3.7.2 Mass Transfer Coefficient.- 3.8 Stochastic Methods (Latin Hypercube Sampling).- 3.9 Synopsis.- References.- 4 Analysis of Solute Transport in Partially Saturated Heterogeneous Soils.- 4.1 Introduction.- 4.2 Basic Concepts and Definitions.- 4.3 Modeling of Solute Transport in Heterogeneous Porous Media.- 4.3.1 Transport in Saturated Porous Media.- 4.3.2 Transport in Unsaturated Porous Media.- 4.3.2.1 Simplified Stochastic Approach.- 4.3.2.2 Simulation of Solute Transport.- 4.3.2.3 General Stochastic Approach.- 4.4 Summary and Conclusions.- References.- 5 Solute Lifetime Correlations in Chemical Transport Through Field Soils.- 5.1 Introduction.- 5.2 Fundamental Statistical Concepts.- 5.3 Perfect Correlations Among Solute Lifetimes.- 5.4 Less Than Perfect Correlations Among Solute Lifetimes.- 5.5 Concluding Remarks.- References.- II Solutions of Flow and Transport in Unsaturated Media by Deterministic Models.- 6 HYSWASOR - Simulation Model of Hysteretic Water and Solute Transport in the Root Zone.- 6.1 Introduction.- 6.2 Governing Equations.- 6.2.1 Water Transport.- 6.2.2 Closed Scanning Loop Hysteresis Algorithm.- 6.2.3 Solute Transport.- 6.2.4 Root Water Uptake.- 6.3 Input.- 6.3.1 General Data.- 6.3.2 Soil Parameters.- 6.3.3 Boundary Conditions.- 6.3.4 Initial Conditions.- 6.4 Output.- 6.4.1 Screen Output.- 6.5 Simulations.- 6.5.1 Daily Irrigation.- 6.5.2 Six-Day-Interval Irrigation.- 6.6 Concluding Remarks.- References.- 7 Unstable Flow: A Potentially Significant Mechanism of Water and Solute Transport to Groundwater.- 7.1 Nature of the Problem.- 7.2 Review of Unstable Flow.- 7.3 Instability Between Fluids Differing in Density or Viscosity.- 7.4 Instability During Infiltration into Unsaturated Soils.- 7.5 Preliminary Evidence from Field Experiments.- 7.6 Final Comment.- References.- 8 Capillary Barrier at the Interface of Two Layers.- 8.1 The Particular Physical Problem Considered.- 8.2 Conditions at the Interface.- 8.3 Basic Equations.- 8.3.1 Two-Phase Flow Background and Notations.- 8.3.2 Soil Characteristics Representation.- 8.3.2.1 Capillary Pressure.- 8.3.2.2 Relative Permeability.- 8.3.2.3 Effective Capillary Drive.- 8.3.3 Propagation Velocities of Fronts.- 8.3.4 Total Velocity Expression for Particular Problem.- 8.4 System of Equations to Be Solved.- 8.5 Solution.- 8.5.1 Procedure.- 8.5.2 Result of Integration.- 8.5.3 Numerical Procedures.- 8.5.3.1 Initialization.- 8.5.3.2 Repetitive Steps.- 8.6 Applications.- 8.6.1 Values of Parameters for Reference Run.- 8.6.2 Reference Run Results.- 8.6.3 Numerical Scheme Parameter Sensitivity.- 8.6.4 Influence of Effective Capillary Drive Magnitude.- 8.6.5 Influence of Supply Rate.- 8.7 Discussion.- 8.8 Conclusions.- References.- List of Symbols.- 9 Constant-Rainfall Infiltration on Hillslopes and Slope Crests.- 9.1 Introduction.- 9.2 Constant-Rainfall Slope-Crest Infiltration: Nonlinear Formulation.- 9.2.1 Flow Equation and Conditions.- 9.2.2 Time-to-Ponding: The Two Cases.- 9.2.2.1 Case 1: R*? K1.- 9.2.2.2 Case 2: R* > K1.- 9.2.3 Remark.- 9.3 Constant-Rainfall Slope-Crest Infiltration: Linearized Formulation.- 9.3.1 Flow Equation and Conditions.- 9.3.2 Dimensional Forms.- 9.3.3 Time-to-Ponding: The Two Cases.- 9.3.4 Remark.- 9.4 Long-Slope Constant-Rainfall Infiltration: - Nonlinear Formulation.- 9.4.1 Flow Equation and Conditions.- 9.4.2 Remark.- 9.5 Long-Slope Constant-Rainfall Infiltration: Linearized Formulation.- 9.5.1 Flow Equation and Conditions, Dimensionless Forms.- 9.5.2 Solution.- 9.6 Physical Implications of Long-Slope Solutions.- 9.6.1 Distribution of Potential and Moisture Content.- 9.6.2 Standard and Rotated Flow Components.- 9.6.2.1 Horizontal and Vertical Components.- 9.6.2.2 Horizontal Inslope Flow Velocity.- 9.6.2.3 Vertical Flow Velocity.- 9.6.2.4 Downslope and Normal Components.- 9.6.3 Integrated Horizontal and Downslope Components.- 9.6.3.1 Integrated Inslope Horizontal Flow.- 9.6.3.2 Integrated Downslope Flow.- 9.6.4 Time Dependence of Surface Flow Velocity Vector.- 9.6.5 Long-Slope Time-to-Ponding.- 9.7 Constant-Rainfall Slope-Crest Solution for ? = 45.- 9.8 Physical Implications of Slope-Crest Solution.- 9.8.1 Evolution of Moisture Content and Potential Distributions.- 9.8.2 The Time Course of Surface Moisture Content.- 9.8.3 Slope-Crest Time-to-Ponding.- 9.8.4 Criterion for Validity of Long-Slope Solution.- 9.8.5 Limits on Long-Slope Solution for Arbitrary ?.- 9.9 Concluding Discussion.- 9.9.1 Inslope Horizontal Flow.- 9.9.2 Downslope Flow.- 9.9.3 The Surface Flow Velocity Vector.- 9.9.3.1 Ponded Infiltration.- 9.9.3.2 Constant-Rainfall Infiltration.- 9.9.4 Comparing the Dynamics of Ponded and Constant-Rainfall Long-Slope Infiltration.- 9.9.5 The Slope-Crest Effect.- 9.9.6 The Downslope Propagation of Ponding from a Slope-Crest.- Appendix: Properties of G(X, Y).- References.- 10 The Transport of Sorbed Chemicals in Eroded Sediment.- 10.1 Introduction.- 10.1.1 Overview of Chemical Enrichment Mechanisms.- 10.2 Sediment Transport with Rainfall Impact the Dominant Erosive Agent.- 10.2.1 Deposition.- 10.2.2 Rainfall Detachment and Redetachment.- 10.2.3 Changes in Time of Sediment Settling-Velocity Distributions During Erosion in the Presence of a Water Layer.- 10.2.4 Sediment Detachment and Transport Under Rainfall with Small Water Depth on the Soil.- 10.3 Sorbed Chemical Enrichment with a Significant Water Depth.- 10.3.1 The Effect of Erosion Process and Surface Contact Cover on the Settling-Velocity Distribution of Eroded Sediment.- 10.3.2 The Effect of Erosion Process and Surface Contact Cover on the Enrichment Ratio of Nitrogen.- 10.3.3 Theoretical Framework for Interpreting Enrichment Effects with a Significant Depth of Overland Flow.- 10.4 Sorbed Chemical Enrichment with Shallow Water Depths.- 10.4.1 Enrichment due to Differential Sorbed Chemical Concentration Within Soil Aggregates.- 10.4.2 Relationship Between Enrichment Ratio and Cumulative Loss of Eroded Sediment.- 10.5 General Discussion and Conclusions.- References.- III Experimental Techniques and Application of Statistical Methods to Field Problems.- 11 Field Measurement of Water and Solute Transport Parameters in Soils.- 11.1 The Use of Permeameters and Infiltrometers to Determine Hydraulic Properties.- 11.2 Hydraulic Properties.- 11.3 Flow Equations and Analyses.- 11.4 Results.- 11.5 Discussion.- 11.6 The Use of TDR to Determine Hydraulic and Solute Transport Properties.- 11.6.1 Hydraulic Properties.- 11.6.2 Solute Transport Parameters.- References.- 12 Estimation of Regional Effective Soil Hydraulic Parameters by Inverse Modeling.- 12.1 Introduction.- 12.2 Methods of Regionalization.- 12.2.1 Scaling
Water Flow and Solute Transport in Soils reflects the main trends of contemporary research in this field and its applications. The contributions fall into three main areas: - The stochastic modeling of solute transport through he- terogeneous soil in the upper layer of the unsaturated zone. - The more traditional scope of analysis of flow through homogeneous or layered formations. - The applications like new devices for field measurements, calculation of solute movement through a soil cover, and the use of geo-statistical methods to quantify solute concentrations in spatially variable soils.