Photoinduced Electron Transport in Solution.- 5.1.1 Determination of Rate and Mechanism.- 5.1.2 Photoinduced Electron Transport of Polymer-Pendant Ru(bpy)32+.- 5.1.3 Photoinduced Electron Transport and Energy Transfer in Polymer-Pendant Porphyrin Complexes.- 5.1.4 Photoinduced Electron Transport Between Ru(bpy)32+ and Colloidal Particles.- 5.1.5 Photoinduced Electron Transport in Molecular Assemblies.- 5.2 Photoinduced Electron Transport at Solid/Liquid Interface.- 5.2.1 Photoelectrochemical Electron Transport with Ru(bpy) 32+ Excitation Center.- 5.2.2 Photoinduced Electron Transport with Macrocyclic Metal Complexes.- 5.2.3 Photoelectrochemical Electron Transport with Semiconductor Excitation Center Coupled with Metal Complexes Working as Catalysts Charge Mediators.- 5.2.3.1 Charge Transport in a Polymer Membrane Containing Metal Complexes.- 5.2.3.2 Catalytic Activities of Metal Complexes Incorporated into a Polymer Membrane to be used in Conjunction with Photoexcitation Center.- 5.3 Conduction and Photoinduced Behavior in Solid Macromolecular Metal Complexes.- 5.3.1 Electrical Conductivity.- 5.3.2 Photoconductivity.- 5.3.3 Photovoltaic Devices.- 5.3.4 Nonlinear Optical Properties.- 5.3.5 Hole Burning.- 6 Outlook.- 6.1 Structure of MMC.- 6.2 Properties and Applications of MMC.- 6.3 Conclusion.
1 Introduction and Fundamental Aspects.- 1.1 Macromolecular Metal Complexes.- 1.2 Types, Formation and Structural Features of MMC.- 1.3 Properties and Application of MMC.- 1.4 Aim of the Book.- 2 Synthesis and Structure of Macromolecular Metal Complexes.- 2.1 Main Structural Principles of Formation and Characteristics of Macromolecular Metal Complexes.- 2.1.1 Classification, Main Requirements and Principles of Macroligands for the Formation of Macromolecular Metal Complexes.- 2.1.1.1 Main Requirements of Macroligands.- 2.1.1.2 Classification of Macroligands.- 2.1.1.3 Methods of Polymer Carrier Functionalization.- 2.1.1.4 Natural Polymers as Macroligands.- 2.1.2 General Principles of MMC Formation.- 2.1.3 Main Approaches for Calculation of Rate Constants of MMC.- 2.1.4 Cooperative Effects During MMC Formation.- 2.1.5 Thermodynamic Description of Macromolecular Metal Complex Formation.- 2.1.6 Main Transformations of Macroligands and Transition Metal Compounds During Complex Formation.- 2.1.7 Methods for Characterization of Composition and Structure of MMC.- 2.2 Type I: Metal Complexes Bound to Macromolecular Carriers via Ligands or Metal Ions.- 2.2.1 Metal Complexes Coordinatively Bound to both Synthetic Organic Polymers and Inorganic Macromolecular Compounds.- 2.2.1.1 MXn Binding with Polyvinylpyridines.- 2.2.1.2 Interaction of MXn with Polyethyleneimine and its Derivates.- 2.2.1.3 MMC Formed by the Use of Oxygen-Containing Donor Centers.- 2.2.1.4 Macrocomplexes with Phosphorous-Containing Ligands.- 2.2.1.5 Sulfur-Containing Macroligands in Coordination Reactions.- 2.2.1.6 Metal Complexes Coordinatively Bound to Synthetic Inorganic Macromolecular Compounds.- 2.2.2 Metal Complexes Covalently and Ionically Bound to Synthetic and Inorganic Macromolecular Compounds.- 2.2.2.1 Specific Features of MXn Binding with Polyvinyl Alcohol.- 2.2.2.2 MMC Derived from Polyacids.- 2.2.2.3 Transition Metal Ions Binding with Polyamino Acids.- 2.2.2.4 Covalent Binding with Inorganic Ligands.- 2.2.3 Macromolecular Metal Chelates.- 2.2.3.1 Molecular Metal Chelates.- 2.2.3.2 Intracomplex Compounds.- 2.2.3.3 MMCh as Macrocyclic Complexes.- 2.2.3.4 Interpolymer Metal Chelates.- 2.2.3.5 Metal Chelates on the Surface of Oxides and Mixed-Type Polymers.- 2.2.4 Polymeric ?-Complexes of Transition Metal Ions.- 2.2.5 Macrocomplexes with Natural Polymers.- 2.2.6 Polymerization and Copolymerization of Metal-Containing Monomers as a Way for MMC Synthesis.- 2.3 Type II: Metal Complexes and Metals as Part of a Polymer Chain or Network.- 2.3.1 Ligand of a Metal Complex as Part of a Polymer Chain or Network (Polymeric Metal Complexes).- 2.3.1.1 Noncyclic Organic Ligands.- 2.3.1.2 Cyclic Organic Ligands.- 2.3.2 Ligand and Metal as Part of a Polymer Chain or Network (Metal Coordination Polymers).- 2.3.2.1 Inorganic Coordination Polymers.- 2.3.2.2 Organic Coordination Polymers.- 2.3.3 Homochain Polymers with Covalent Bonds Between Metals (Homometallic Polymers).- 2.3.4 Heterochain Polymers with Covalent Bonds Between Metals and Another Element (Heterometallic Polymers).- 2.3.5 Cofacial Stacked Polymeric Metal Complexes.- 2.3.5.1 Covalent/Covalent Bonds Between Central Metal Ions.- 2.3.5.2 Covalent/Coordinative Bonds Between Central Metal Ions.- 2.3.5.3 Coordinative/Coordinative Bonds Between Central Metal Ions.- 2.3.5.4 Self-Organization, Discotic Crystalline Liquids.- 2.3.6 Metallocenes as Part of a Polymer Chain (Polymetallocenes).- 2.4 Type III: Metal Complexes, Zero-Valent Metals and Metal Clusters Physically Connected with Macromolecular Compounds.- 2.4.1 Combination with Organic Polymers.- 2.4.1.1 Metal Complexes.- 2.4.1.2 Metal Clusters.- 2.4.2 Combination with Inorganic High Molecular Systems.- 2.4.2.1 Metal Complexes.- 2.4.2.2 Metal Clusters.- 3 Polymer Metal Complexes in Living Systems.- 3.1 Introduction.- 3.2 Overview of Ligands Present in Living Systems.- 3.2.1 General Coordination of Behaviour of Ligands.- 3.2.2 Systematic Overview of Ligands that Bind to Metals in Biological Systems.- 3.3 Metal Ions Occurring in Biological Systems.- 3.3.1 General Aspects.- 3.3.2 Valency and Coordination Numbers of Metal Ions.- 3.4 Applications of Metal Complexes in Living Systems.- 3.4.1 Transport and Storage of Metal Ions.- 3.4.2 Transport and Storage of Small Molecules by Macromolecules.- 3.4.3 Catalysis by Metal Ions in Biomacromolecules.- 3.4.4 Medicinal Functions of Added Metal Ions In Vivo.- 3.4.5 Non-Biology Applications of Bioinorganic Principles in Polymers.- 3.5 Conclusion.- 4 Electronic Processes in Macromolecular Metal Complexes.- 4.1 Ion-Conductive Materials of Macromolecules.- 4.1.1 Introduction.- 4.1.2 Advancement in Ion-Conductive Macromolecules.- 4.1.2.1 Macromolecules and Liquid Electrolytes.- 4.1.2.2 Poly(oxyethylene)-Based Electrolytes.- 4.1.2.3 Single Ion-Conductors.- 4.1.3 Dissociation of Inorganic Salts in Macromolecules.- 4.1.3.1 Ion-Dipole Interaction in Macromolecules.- 4.1.3.2 Dielectric Constant for Ion Dissociation.- 4.1.3.3 Association States of Ions in Macromolecular Solids.- 4.1.3.4 Development of New Salts.- 4.1.3.5 Composite Systems (Molton Salts/Macromolecules).- 4.1.4 Ion-Conduction Mechanism in Macromolecular Systems.- 4.1.4.1 Role of Segmental Motion of Macromolecules for Ion Conduction.- 4.1.4.2 Phase Diagrams of (Macromolecule/Salt) Composites.- 4.1.4.3 Ions with Different Size and Ion-Oligoether Interaction.- 4.1.5 Performance of Ion-Conducting Macromolecules.- 4.1.5.1 Lithium Secondary Batteries.- 4.1.5.2 Electrochromic Displays.- 4.1.5.3 Molecular Devices.- 4.1.6 Conclusion.- 4.2 Transport Phenomena and Separation of Small Molecules.- 4.2.1 Facilitated Transport with Metal Complexes as a Carrier.- 4.2.2 Chemically Specific and Reversible Binding of Small Molecules in Solid MMCs.- 4.2.3 Solid MMC Membranes for Facilitated Transport and Gas Separation.- 4.2.4 Surface Diffusion of Oxygen in Porous MMC Membranes.- 4.3 Assembled Porphyrins and Oxygen Coordination.- 4.3.1 Introduction.- 4.3.2 Assembled Porphyrin Systems in Solid State.- 4.3.2.1 Crystal Structure of Porphyrin.- 4.3.2.2 Structure of Polyporphyrins and Electron Transfer.- 4.3.3 Self-Assembly of Amphiphilic Porphyrins in Aqueus Medium.- 4.3.3.1 Morphology and Structure of Porphyrin Assembly.- 4.3.3.2 Electronic Process of Porphyrin Fiber.- 4.3.3.3 Octopus-Porphyrin Assembly.- 4.3.4 Self-Assembled Lipidporphyrin Vesicle and Oxygen Coordination.- 4.3.4.1 Microstructure of Lipidporphyrin Vesicle.- 4.3.4.2 Porphyrin Arrangement in Lipidporphyrin Vesicle.- 4.3.4.3 02-Coordination Property of Lipidporphyrin Vesicle.- 4.3.5 Lipidheme Microsphere as Oxygen Carrier.- 4.3.5.1 Physicochemical Properties of Lipidheme Microsphere.- 4.3.5.2 02-Solubility of Lipidheme Microsphere.- 4.3.5.3 Biocirculation System as 02-Carrier.- 4.4 Catalysis in Macromolecular Metal Complexes.- 4.4.1 Gerneral Concepts.- 4.4.2 Organic Polymer-Supported Catalysts Based on Mononuclear Transition Metal Complexes.- 4.4.2.1 Same Structure as in Monomeric Analog.- 4.4.2.2 Different Structure from Monomeric Analogs.- 4.4.3 Macromolecular Systems Involving Transition Metal Clusters.- 4.4.4 Transition Metal Complexes on Inorganic Supports.- 4.4.5 Conclusion.- 4.5 Recent Advances in Oxidative Polymerization Through Multielectron Transfer.- 4.5.1 Introduction.- 4.5.2 Multielectron Transfer of Metal Complexes and Molecular Conversions.- 4.5.2.1 Multielectron Transfer and Polynuclear Complex.- 4.5.2.2 Reduction of Oxygen Through Multielectron Transfer.- 4.5.3 Oxidative Polymerization of Phenols.- 4.5.3.1 Oxidative Polymerization.- 4.5.3.2 Catalytic Mechanism of Copper-Amine Complexes.- 4.5.4Oxidative Polymerization of Disulfides.- 4.5.4.1 Oxidative Polymerization.- 4.5.4.2 Effect of Substituents on Polymerization Behaviors.- 4.5.4.3 One-Step, Two-Electron Transfer of Vanadium Complex.- 4.5.5 Oxidative Polymerization of Benzene.- 4.5.6 Conclusion.- 5 Photoinduced Electron Transport of Macromolecular Metal Complexes.- 5.1