1 Uncertainty, Intuition, and Expectation.- 1 Ideas and Examples.- 2 The Empirical Basis.- 3 Averages over a Finite Population.- 4 Repeated Sampling: Expectation.- 5 More on Sample Spaces and Variables.- 6 Ideal and Actual Experiments: Observables.- 2 Expectation.- 1 Random Variables.- 2 Axioms for the Expectation Operator.- 3 Events: Probability.- 4 Some Examples of an Expectation.- 5 Moments.- 6 Applications: Optimization Problems.- 7 Equiprobable Outcomes: Sample Surveys.- 8 Applications: Least Square Estimation of Random Variables.- 9 Some Implications of the Axioms.- 3 Probability.- 1 Events, Sets and Indicators.- 2 Probability Measure.- 3 Expectation as a Probability Integral.- 4 Some History.- 5 Subjective Probability.- 4 Some Basic Models.- 1 A Model of Spatial Distribution.- 2 The Multinomial, Binomial, Poisson and Geometric Distributions.- 3 Independence.- 4 Probability Generating Functions.- 5 The St. Petersburg Paradox.- 6 Matching, and Other Combinatorial Problems.- 7 Conditioning.- 8 Variables on the Continuum: The Exponential and Gamma Distributions.- 5 Conditioning.- 1 Conditional Expectation.- 2 Conditional Probability.- 3 A Conditional Expectation as a Random Variable.- 4 Conditioning on a ? Field.- 5 Independence.- 6 Statistical Decision Theory.- 7 Information Transmission.- 8 Acceptance Sampling.- 6 Applications of the Independence Concept.- 1 Renewal Processes.- 2 Recurrent Events: Regeneration Points.- 3 A Result in Statistical Mechanics: The Gibbs Distribution.- 4 Branching Processes.- 7 The Two Basic Limit Theorems.- 1 Convergence in Distribution (Weak Convergence).- 2 Properties of the Characteristic Function.- 3 The Law of Large Numbers.- 4 Normal Convergence (the Central Limit Theorem).- 5 The Normal Distribution.- 6 The Law of Large Numbers and the Evaluation of Channel Capacity.- 8 Continuous Random Variables and Their Transformations.- 1 Distributions with a Density.- 2 Functions of Random Variables.- 3 Conditional Densities.- 9 Markov Processes in Discrete Time.- 1 Stochastic Processes and the Markov Property.- 2 The Case of a Discrete State Space: The Kolmogorov Equations.- 3 Some Examples: Ruin, Survival and Runs.- 4 Birth and Death Processes: Detailed Balance.- 5 Some Examples We Should Like to Defer.- 6 Random Walks, Random Stopping and Ruin.- 7 Auguries of Martingales.- 8 Recurrence and Equilibrium.- 9 Recurrence and Dimension.- 10 Markov Processes in Continuous Time.- 1 The Markov Property in Continuous Time.- 2 The Case of a Discrete State Space.- 3 The Poisson Process.- 4 Birth and Death Processes.- 5 Processes on Nondiscrete State Spaces.- 6 The Filing Problem.- 7 Some Continuous-Time Martingales.- 8 Stationarity and Reversibility.- 9 The Ehrenfest Model.- 10 Processes of Independent Increments.- 11 Brownian Motion: Diffusion Processes.- 12 First Passage and Recurrence for Brownian Motion.- 11 Action Optimisation; Dynamic Programming.- 1 Action Optimisation.- 2 Optimisation over Time: the Dynamic Programming Equation.- 3 State Structure.- 4 Optimal Control Under LQG Assumptions.- 5 Minimal-Length Coding.- 6 Discounting.- 7 Continuous-Time Versions and Infinite-Horizon Limits.- 8 Policy Improvement.- 12 Optimal Resource Allocation.- 1 Portfolio Selection in Discrete Time.- 2 Portfolio Selection in Continuous Time.- 3 Multi-Armed Bandits and the Gittins Index.- 4 Open Processes.- 5 Tax Problems.- 13 Finance: `Risk-Free' Trading and Option Pricing.- 1 Options and Hedging Strategies.- 2 Optimal Targeting of the Contract.- 3 An Example.- 4 A Continuous-Time Model.- 5 How Should it Be Done?.- 14 Second-Order Theory.- 1 Back to L2.- 2 Linear Least Square Approximation.- 3 Projection: Innovation.- 4 The Gauss-Markov Theorem.- 5 The Convergence of Linear Least Square Estimates.- 6 Direct and Mutual Mean Square Convergence.- 7 Conditional Expectations as Least Square Estimates: Martingale Convergence.- 15 Consistency and Extension: The Finite-Dimensional Case.- 1 The Issues.- 2 Convex Sets.- 3 The Consistency Condition for Expectation Values.- 4 The Extension of Expectation Values.- 5 Examples of Extension.- 6 Dependence Information: Chernoff Bounds.- 16 Stochastic Convergence.- 1 The Characterization of Convergence.- 2 Types of Convergence.- 3 Some Consequences.- 4 Convergence in rth Mean.- 17 Martingales.- 1 The Martingale Property.- 2 Kolmogorov's Inequality: the Law of Large Numbers.- 3 Martingale Convergence: Applications.- 4 The Optional Stopping Theorem.- 5 Examples of Stopped Martingales.- 18 Large-Deviation Theory.- 1 The Large-Deviation Property.- 2 Some Preliminaries.- 3 Cramer's Theorem.- 4 Some Special Cases.- 5 Circuit-Switched Networks and Boltzmarm Statistics.- 6 Multi-Class Traffic and Effective Bandwidth.- 7 Birth and Death Processes.- 19 Extension: Examples of the Infinite-Dimensional Case.- 1 Generalities on the Infinite-Dimensional Case.- 2 Fields and ?-Fields of Events.- 3 Extension on a Linear Lattice.- 4 Integrable Functions of a Scalar Random Variable.- 5 Expectations Derivable from the Characteristic Function: Weak Convergence324.- 20 Quantum Mechanics.- 1 The Static Case.- 2 The Dynamic Case.- References.