1 Some Principles Governing the Luminescence of Organic Molecules.- 1. Introduction.- 2. Spontaneous Emission.- 2.1. General Considerations.- 2.2. Luminescence from Nearby States.- 2.3. Multiple State Decay.- 3. Molecular Luminescence Characteristics.- 3.1. The Transition Dipole Moment.- 3.2. Determination of Transition-Moment Directions from Fluorescence.- 3.3. Polarization of Fluorescence from Crystals.- 4. Principles of Luminescence Experiments Carried Out with Lasers.- 4.1. Nonlinear Processes and Optical Pumping.- 5. Coherent Interactions of Molecules and Light.- 5.1. The Distinctions between Fluorescence and Resonance Raman Effects.- 6. Ultrafast Fluorescence Decay.- 7. The Effects of Inhomogeneous Distributions.- 8. Bibliography.- 2 Covalent Fluorescent Probes.- 1. Introduction.- 2. Primary Considerations in Fluorescent Labeling of Biomolecules.- 2.1. Reactive Sites in Biomolecules.- 2.2. Reactive Handles on Fluorescent Probes.- 2.3. Fluorophores.- 3. Covalent Labeling of Biomolecules.- 3.1. Solubilization.- 3.2. Removal of Excess Probe.- 3.3. Other Considerations in Labeling.- 4. Selective Modification Reactions.- 4.1. Thiol Modification.- 4.2. Methionine Modification.- 4.3. Histidine Modification.- 4.4. Amine Modification.- 4.5. Tyrosine Modification.- 4.6. Carboxylic Acid Modification.- 4.7. Modification of Other Residues in Proteins.- 4.8. Modification of Nucleic Acids, Polysaccharides, and Glycoproteins.- 4.9. Modification by Photoactivated Fluorescent Probes.- 5. References.- 3 Nanosecond Pulse Fluorimetry of Proteins.- 1. Introduction.- 2. Instrumentation and Data Analyses.- 2.1. Single-Photon-Counting Nanosecond-Pulse Fluorimeter.- 2.2. Fluorescent Decay Data Analysis.- 3. Fluorescence Lifetime Studies.- 3.1. Lifetime of Tyrosine and Tryptophan Residues in Proteins.- 3.2. Fluorescence Decay of Coenzymes NADH and NADPH.- 4. Fluorescence Quenching Studies.- 4.1. Background.- 4.2. Fluorescence Lifetime Reference Standards.- 4.3. Long-lived Pyrene Probes in Quenching Studies.- 4.4. Dynamic Structural Fluctuations of Proteins in Solution.- 5. Fluorescence Energy Transfer for Distance Measurements in Proteins.- 5.1. Evaluation of Energy Transfer Efficiency and Calculation of Separation Distance.- 5.2. Some Practical Considerations and Problems Involved in Energy Transfer Experiments.- 5.3. Applications in Protein Systems.- 5. Nanosecond Pulse Fluorimetry Studies of Muscle Contractile Proteins.- 6.1. Pyrene Lifetime and Excimer Fluorescence in Labeled Actin and Tropomyosin.- 6.2. 1, N6-Ethenoadenosine Triphosphate (?-ATP).- 6.3. Distance Measurement Studies of Muscle Contractile Proteins by Fluorescence Energy Transfer.- 7. References.- 4 The Use of Fluorescence Anisotropy Decay in the Study of Biological Macromolecules.- 1. Introduction.- 1.1. Application of Fluorescence Anisotropy.- 2. Theory.- 2.1. Basic Principles.- 2.2. The Effect of the Shape of the Excitation Pulse.- 2.3. The Time Decay of Fluorescence Anisotropy.- 2.4. The Rotational Diffusion of Rigid Ellipsoidal Particles.- 2.5. The Time Decay of Anisotropy for Ellipsoidal Particles.- 2.6. Computer Simulation of Anisotropy Decay.- 2.7. Internal Rotation.- 2.8. Analysis of Multiexponential Decay of Anisotropy.- 2.9. Relation Between Static and Dynamic Anisotropics.- 3. Experimental Procedures: Measurement of Anisotropy Decay.- 4. Applications of Fluorescence Anisotropy.- 4.1. Anisotropic Rotation.- 4.2. The Red Edge Effect in Aromatic Molecules.- 4.3. A Comparative Study of Two Rigid Proteins: Lysozyme and ?-Laetalbumin.- 4.4. Proteins with Internal Rotation Involving a Weil-Defined Domain: The Immunoglobulins.- 4.5. Internal Flexibility of Multidomain Proteins: Myosin.- 4.6. Internal Flexibility of Multidomain Proteins: F-Actin.- 4.7. Internal Flexibility of Multidomain Proteins: Fibrinogen.- 4.8. Internal Flexibility: Motion of Intrinsic Fluorophores.- 4.9. Librational Motion of Fluorescent Probes Linked to Hemoglobin and Its Subunits.- 5. References.- 5 Plasma Lipoproteins: Fluorescence as a Probe of Structure and Dynamics.- 1. Introduction.- 1.1. Native Lipoproteins.- 1.2. Lipoprotein Function.- 1.3. Isolation of Lipoproteins and Their Apoproteins.- 1.4. Reassembled Lipoproteins.- 2. Structural Studies of Native Lipoproteins, Apoproteins, and Reassembled Lipoproteins, Using Intrinsic Protein Fluorescence and Covalently Attached Fluorescence Probes.- 2.1. Native Lipoproteins.- 2.2. Apoproteins.- 2.3. Reassembled Lipoproteins.- 3. Extrinsic Fluorescence Probes of Lipoprotein Structure and Function.- 3.1. Native Lipoproteins.- 3.2. Reassembled Lipoproteins.- 3.3. Fluorescence Probes of Lipoprotein Function.- 4. Dynamics of Lipid Transfer.- 5. Summary and Perspectives.- 6. References.- 6 Fluorescent Dye-Nucleic Acid Complexes.- 1. Introduction.- 2. Intercalating and Nonintercalating Dyes.- 2.1. Intercalating Dyes.- 2.2. Nonintercalating Dyes.- 3. Nucleic Acid-Dye Binding Isotherms.- 3.1. Intercalating Dyes.- 3.2. Nonintercalating Dyes.- 4. Fluorescence Lifetimes and Quantum Yields.- 4.1.DNA-Acridine Dye Complexes.- 4.2. Nucleic Acid-Ethidium Bromide Complexes.- 4.3. Bifunctional Intercalating Dyes.- 4.4. Mononucleotide-Dye Complexes.- 5. Decay of Fluorescence Anisotropy.- 5.1. General Considerations.- 5.2. tRNA-Ethidium Bromide Complexes.- 5.3. DNA-Ethidium Bromide and DNA-Acridine Dye Complexes.- 5.4. Anisotropy Decay Due to Energy Transfer.- 6. Radiationless Energy Transfer.- 6.1. Singlet-Singlet Energy Transfer.- 6.2. Nucleic Acid Base-Dye Energy Transfer: Sensitized Fluorescence.- 6.3. Triplet-Singlet and Triplet-Triplet Energy Transfers.- 7. Cytological Applications.- 7.1. Acridine Dyes.- 7.2. Bisbenzimidazole Dyes.- 8. References.