A Tutorial Introduction to Maple --;1. Differential Equations --;2. Linear Systems in the Plane --;3. Nonlinear Systems in the Plane --;4. Interacting Species --;5. Limit Cycles --;6. Hamiltonian Systems, Lyapunov Functions, and Stability --;7. Bifurcation Theory --;8. Three-Dimensional Autonomous Systems and Chaos --;9. Poincare Maps and Nonautonomous Systems in the Plane --;10. Local and Global Bifurcations --;11. The Second Part of David Hilbert's Sixteenth Problem --;12. Limit Cycles of Lienard Systems --;13. Linear Discrete Dynamical Systems --;14. Nonlinear Discrete Dynamical Systems --;15. Complex Iterative Maps --;16. Electromagnetic Waves and Optical Resonators --;17. Analysis of Nonlinear Optical Resonators.
Suitable for many kinds of dynamical systems courses, this book shows the power of using a computer algebra program to study dynamical systems. It provides an introduction to the theory of dynamical systems with the aid of the Maple algebraic manipulation package.
Differentiable dynamical systems -- Data processing.