Structure-Preserving Algorithms for Oscillatory Differential Equations
[Book]
Xinyuan Wu ; Jianlin Xia
2., nd ed. 2016
Berlin Springer Berlin
2015
x, 340 Seiten in 1 Teil 40 schw.-w. Illustrationen, 1 farbige Illustrationen 235 x 155 mm, 0 g
Matrix-variation-of-constants formula.- Improved St ormer-Verlet formulae with applications.- Improved Filon-type asymptotic methods for highly oscillatory differential equations.- Efficient energy-preserving integrators for multi-frequency oscillatory Hamiltonian systems.- An extended discrete gradient formula for multi-frequency oscillatory Hamiltonian systems.- Trigonometric Fourier collocation methods for multi-frequency oscillatory systems.- Error bounds for explicit ERKN integrators for multi-frequency oscillatory systems.- Error analysis of explicit TSERKN methods for highly oscillatory systems.- Highly accurate explicit symplectic ERKN methods for multi-frequency oscillatory Hamiltonian systems.- Multidimensional ARKN methods for general multi-frequency oscillatory second-order IVPs.- A simplified Nystrom-tree theory for ERKN integrators solving oscillatory systems.- An efficient high-order explicit scheme for solving Hamiltonian nonlinear wave equations.