عرض القائمة
الرئیسیة
البحث المتقدم
قائمة المکتبات
عنوان
Combining artificial neural nets :
پدید آورنده
Amanda J.C. Sharkey (ed.).
موضوع
Neuronales Netz -- Aufsatzsammlung.,Neuronales Netz -- Konnektionismus -- Aufsatzsammlung.,Neuronales Netz -- Maschinelles Lernen -- Aufsatzsammlung.
رده
کتابخانه
کتابخانه مطالعات اسلامی به زبان های اروپایی
محل استقرار
استان:
قم
ـ شهر:
قم
تماس با کتابخانه :
32910706
-
025
185233004X
9781852330040
b540269
Combining artificial neural nets :
[Book]
ensemble and modular multi-net systems
Amanda J.C. Sharkey (ed.).
London
Springer
1999
XV, 298 Seiten : Illustrationen, Diagramme
Perspectives in neural computing.
Literaturangaben.
1. Multi-Net Systems.- 1.0.1 Different Forms of Multi-Net System.- 1.1 Ensembles.- 1.1.1 Why Create Ensembles?.- 1.1.2 Methods for Creating Ensemble Members.- 1.1.3 Methods for Combining Nets in Ensembles.- 1.1.4 Choosing a Method for Ensemble Creation and Combination.- 1.2 Modular Approaches.- 1.2.1 Why Create Modular Systems?.- 1.2.2 Methods for Creating Modular Components.- 1.2.3 Methods for Combining Modular Components.- 1.3 The Chapters in this Book.- 1.4 References.- 2. Combining Predictors.- 2.1 Combine and Conquer.- 2.2 Regression.- 2.2.1 Bias and Variance.- 2.2.2 Bagging - The Pseudo-Fairy Godmother.- 2.2.3 Results of Bagging.- 2.3 Classification.- 2.3.1 Bias and Spread.- 2.3.2 Examples.- 2.3.3 Bagging Classifiers.- 2.4 Remarks.- 2.4.1 Pruning.- 2.4.2 Randomising the Construction.- 2.4.3 Randomising the Outputs.- 2.5 Adaboost and Arcing.- 2.5.1 The Adaboost Algorithm.- 2.5.2 What Makes Adaboost Work?.- 2.6 Recent Research.- 2.6.1 Margins.- 2.6.2 Using Simple Classifiers.- 2.6.3 Instability is Needed.- 2.7 Coda.- 2.7.1 Heisenberg's Principle for Statistical Prediction.- 2.8 References.- 3. Boosting Using Neural Networks.- 3.1 Introduction.- 3.2 Bagging.- 3.2.1 Classification.- 3.2.2 Regression.- 3.2.3 Remarks.- 3.3 Boosting.- 3.3.1 Introduction.- 3.3.2 A First Implementation: Boostl.- 3.3.3 Adaboost.M1.- 3.3.4 AdaBoost.M2.- 3.3.5 AdaBoost.R2.- 3.4 Other Ensemble Techniques.- 3.5 Neural Networks.- 3.5.1 Classification.- 3.5.2 Early Stopping.- 3.5.3 Regression.- 3.6 Trees.- 3.6.1 Training Classification Trees.- 3.6.2 Pruning Classification Trees.- 3.6.3 Training Regression Trees.- 3.6.4 Pruning Regression Trees.- 3.7 Trees vs. Neural Nets.- 3.8 Experiments.- 3.8.1 Experiments Using Boostl.- 3.8.2 Experiments Using AdaBoost.- 3.8.3 Experiments Using AdaBoost.R2.- 3.9 Conclusions.- 3.10 References.- 4. A Genetic Algorithm Approach for Creating Neural Network Ensembles.- 4.1 Introduction.- 4.2 Neural Network Ensembles.- 4.3 The ADDEMUP Algorithm.- 4.3.1 ADDEMUP's Top-Level Design.- 4.3.2 Creating and Crossing-Over KNNs.- 4.4 Experimental Study.- 4.4.1 Generalisation Ability of ADDEMUP.- 4.4.2 Lesion Study of ADDEMUP.- 4.5 Discussion and Future Work.- 4.6 Additional Related Work.- 4.7 Conclusions.- 4.8 References.- 5. Treating Harmful Collinearity in Neural Network Ensembles.- 5.1 Introduction.- 5.2 Overview of Optimal Linear Combinations (OLC) of Neural Networks.- 5.3 Effects of Collinearity on Combining Neural Networks.- 5.3.1 Collinearity in the Literature on Combining Estimators.- 5.3.2 Testing the Robustness of NN Ensembles.- 5.3.3 Collinearity, Correlation, and Ensemble Ambiguity.- 5.3.4 The Harmful Effects of Collinearity.- 5.4 Improving the Generalisation of NN Ensembles by Treating Harmful Collinearity.- 5.4.1 Two Algorithms for Selecting the Component NNs in the Ensemble.- 5.4.2 Modification to the Algorithms.- 5.5 Experimental Results.- 5.5.1 Problem I.- 5.5.2 Problem II.- 5.5.3 Discussion of the Experimental Results.- 5.6 Concluding Remarks.- 5.7 References.- 6. Linear and Order Statistics Combiners for Pattern Classification.- 6.1 Introduction.- 6.2 Class Boundary Analysis and Error Regions.- 6.3 Linear Combining.- 6.3.1 Linear Combining of Unbiased Classifiers.- 6.3.2 Linear Combining of Biased Classifiers.- 6.4 Order Statistics.- 6.4.1 Introduction.- 6.4.2 Background.- 6.4.3 Combining Unbiased Classifiers Through OS.- 6.4.4 Combining Biased Classifiers Through OS.- 6.5 Correlated Classifier Combining.- 6.5.1 Introduction.- 6.5.2 Combining Unbiased Correlated Classifiers.- 6.5.3 Combining Biased Correlated Classifiers.- 6.5.4 Discussion.- 6.6 Experimental Combining Results.- 6.6.1 Oceanic Data Set.- 6.6.2 Probenl Benchmarks.- 6.7 Discussion.- 6.8 References.- 7. Variance Reduction via Noise and Bias Constraints.- 7.1 Introduction.- 7.2 Theoretical Considerations.- 7.3 The BootstrapEnsemble with Noise Algorithm.- 7.4 Results on the Two-Spirals Problem.- 7.4.1 Problem Description.- 7.4.2 Feed-Forward Network Architecture.- 7.5 Discussion.- 7.6 References.- 8. A Comparison of Visual Cue Combination Models.- 8.1 Introduction.- 8.2 Stimulus.- 8.3 Tasks.- 8.4 Models of Cue Combination.- 8.5 Simulation Results.- 8.6 Summary.- 8.7 References.- 9. Model Selection of Combined Neural Nets for Speech Recognition.- 9.1 Introduction.- 9.2 The Acoustic Mapping.- 9.3 Network Architectures.- 9.3.1 Combining Networks for Acoustic Mapping.- 9.3.2 Linear Mappings.- 9.3.3 RBFLinear Networks.- 9.3.4 Multilayer Perceptron Networks.- 9.4 Experimental Environment.- 9.4.1 System Architecture.- 9.4.2 Acoustic Analysis.- 9.4.3 The Speech Recogniser.- 9.4.4 Generation of the Training Set.- 9.4.5 Application 1: Datasets and Recognition Task.- 9.4.6 WER and MSE.- 9.5 Bootstrap Estimates and Model Selection.- 9.5.1 Bootstrap Error Estimates.- 9.5.2 The Bootstrap and Model Selection.- 9.5.3 The Number of Bootstrap Replicates.- 9.5.4 Bootstrap Estimates: Evaluation.- 9.6 Normalisation Results.- 9.7 Continuous Digit Recognition Over the Telephone Network.- 9.8 Conclusions.- 9.9 References.- 10. Self-Organised Modular Neural Networks for Encoding Data.- 10.1 Introduction.- 10.1.1 An Image Processing Problem.- 10.1.2 Vector Quantisers.- 10.1.3 Curved Manifolds.- 10.1.4 Structure of this Chapter.- 10.2 Basic Theoretical Framework.- 10.2.1 Objective Function.- 10.2.2 Stationarity Conditions.- 10.2.3 Joint Encoding.- 10.2.4 Factorial Encoding.- 10.3 Circular Manifold.- 10.3.1 2 Overlapping Posterior Probabilities.- 10.3.2 3 Overlapping Posterior Probabilities.- 10.4 Toroidal Manifold: Factorial Encoding.- 10.4.1 2 Overlapping Posterior Probabilities.- 10.4.2 3 Overlapping Posterior Probabilities.- 10.5 Asymptotic Results.- 10.6 Approximate the Posterior Probability.- 10.7 Joint Versus Factorial Encoding.- 10.8 Conclusions.- 10.9 References.- 11. Mixtures of X.- 11.1 Introduction.- 11.2 Mixtures of X.- 11.2.1 Mixtures of Distributions from the Exponential Family.- 11.2.2 Hidden Markov Models.- 11.2.3 Mixtures of Experts.- 11.2.4 Mixtures of Marginal Models.- 11.2.5 Mixtures of Cox Models.- 11.2.6 Mixtures of Factor Models.- 11.2.7 Mixtures of Trees.- 11.3 Summary.- 11.4 References.
Neuronales Netz -- Aufsatzsammlung.
Neuronales Netz -- Konnektionismus -- Aufsatzsammlung.
Neuronales Netz -- Maschinelles Lernen -- Aufsatzsammlung.
Amanda J.C. Sharkey (ed.).
Amanda J C Sharkey
مطالعه متن کتاب
[Book]
Y
الاقتراح / اعلان الخلل
×
الاقتراح / اعلان الخلل
×
تحذیر!
دقق في تسجیل المعلومات
اعلان الخلل
اقتراح