I. Distributions --;1. Introduction --;2. Spaces of Test Functions --;3. Schwartz Distributions --;4. Calculus for Distributions --;5. Distributions as Derivatives of Functions --;6. Tensor Products --;7. Convolution Products --;8. Applications of Convolution --;9. Holomorphic Functions --;10. Fourier Transformation --;11. Distributions and Analytic Functions --;12. Other Spaces of Generalized Functions --;II. Hilbert Space Operators --;13. Hilbert Spaces: A Brief Historical Introduction --;14. Inner Product Spaces and Hilbert Spaces --;15. Geometry of Hilbert Spaces --;16. Separable Hilbert Spaces. 17. Direct Sums and Tensor Products --;18. Topological Aspects --;19. Linear Operators --;20. Quadratic Forms --;21. Bounded Linear Operators --;22. Special Classes of Bounded Operators --;23. Self-adjoint Hamilton Operators --;24. Elements of Spectral Theory --;25. Spectral Theory of Compact Operators --;26. The Spectral Theorem --;27. Some Applications of the Spectral Representation --;III. Variational Methods --;28. Introduction --;29. Direct Methods in the Calculus of Variations. 30. Differential Calculus on Banach Spaces and Extrema of Functions --;31. Constrained Minimization Problems (Method of Lagrange Multipliers) --;32. Boundary and Eigenvalue Problems --;33. Density Functional Theory of Atoms and Molecules --;IV. Appendix --;A. Completion of Metric Spaces --;B. Metrizable Locally Convex Topological Vector Spaces --;C. The Theorem of Baire --;D. Bilinear Functionals.
Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.