Papers presented at the Workshop on Feasible Mathematics :
[Book]
[a Mathematical Sciences Institute workshop, Ithaca, New York, June 1989] ; held at Cornell University
[Samuel R. Buss ... (eds.)].
Boston ; Berlin [u.a.]
Birkhäuser
1990
VIII, 349 S.
Progress in computer science and applied logic, 9.; Progress in computer science and applied logic; Feasible mathematics
Parity and the Pigeonhole Principle.- Computing over the Reals (or an Arbitrary Ring) Abstract.- On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results.- Sequential, Machine Independent Characterizations of the Parallel Complexity Classes AlogTIME, ACk NCk and NC.- Characterizations of the Basic Feasible Functionals of Finite Type.- Functional Interpretations of Feasibly Constructive Arithmetic - Abstract.- Polynomial-time Combinatorial Operators are Polynomials.- Isols and Kneser Graphs.- Stockmeyer Induction.- Probabilities of Sentences about Two Linear Orderings.- Bounded Linear Logic: a Modular Approach to Polynomial Time Computability, Extended Abstract.- On Finite Model Theory (Extended Abstract).- Computational Models for Feasible Real Analysis.- Inverting a One-to-One Real Function is Inherently Sequential.- On Bounded ?11 Polynomial Induction.- Subrecursion and Lambda Representation over Free Algebras (Preliminary Summary).- Complexity-Theoretic Algebra: Vector Space Bases.- When is every Recursive Linear Ordering of Type ? Recursively Isomorphic to a Polynomial Time Linear Ordering over the Natural Numbers in Binary Form?.