Includes bibliographical references (p. 473-484) and index.
11. Asymptotic Flatness -- 11.1 Conformal Infinity -- 11.2 Energy -- 12. Black Holes -- 12.1 Black Holes and the Cosmic Censor Conjecture -- 12.2 General Properties of Black Holes -- 12.3 The Charged Kerr Black Holes -- 12.4 Energy Extraction from Black Holes -- 12.5 Black Holes and Thermodynamics -- 13. Spinors -- 13.1 Spinors in Minkowski Spacetime -- 13.2 Spinors in Curved Spacetime -- 14. Quantum Effects in Strong Gravitational Fields -- 14.1 Quantum Gravity -- 14.2 Quantum Fields in Curved Spacetime -- 14.3 Particle Creation near Black Holes -- 14.4 Black Hold Thermodynamics -- Appendices -- A. Topological Spaces -- B. Differential Forms, Integration, and Frobenius's Theorem -- B.1 Differential Forms -- B.2 Integration -- B.3 Frobenius's Theorem -- C. Maps of Manifolds, Lie Derivatives, and Killing Fields -- C. 1 Maps of Manifolds -- C. 2 Lie Derivatives -- C. 3 Killing Vector Fields -- D. Conformal Transformations -- E. Lagrangian and Hamiltonian Formulations of Einstein's Equation -- E.1 Lagrangian Formulation -- E.2 Hamiltonian Formulation -- F. Units and Dimensions.
6.1 Derivation of the Schwartzschild Solution -- 6.2 Interior Solutions -- 6.3 Geodesics of Schwartzschild: Gravitation Redshift, Perihelion Precession, Bending of Light, and Time Delay -- 6.4 The Kruskal Extension -- Part II. Advanced Topics -- 7. Methods for Solving Einstein's Equation -- 7.1 Stationary, Axisymmetric Solutions -- 7.2 Spatially Homogeneous Cosmologies -- 7.3 Algebraically Special Solutions -- 7.4 Methods for Generating Solutions -- 7.5 Perturbations -- 8. Casual Structure -- 8.1 Futures and Pasts: Basic Definitions and Results -- 8.2 Causality Conditions -- 8.3 Domains of Dependence -- Global Hyperbolicity -- 9. Singularities -- 9.1 What is a Singularity? -- 9.2 Timelike and Null Geodesic Congruences -- 9.3 Conjugate Points -- 9.4 Existence of Maximum Length Curves -- 9.5 Singularity Theorems -- 10. The Initial Value Formulation -- 10.1 Initial Value Formulation for Particles and Fields -- 10.2 Initial Value Formulation of General Relativity.
Part I. Fundamentals -- 1. Introduction -- 1.1 Introduction -- 1.2 Space and Time in Prerelativity Physics and in Special Relativity -- 1.3 The Spacetime Metric -- 1.4 General Relativity -- 2. Manifolds and Tensor Fields -- 2.1 Manifolds -- 2.2 Vectors -- 2.3 Tensors the Metric Tensor -- 2.4 The Abstract Index Notation -- 3. Curvature -- 3.1 Derivative Operators and Parallel Transport -- 3.2 Curvature -- 3.3 Geodesics -- 3.4 Methods for Computing Curvature -- 4. Einstein's Equation -- 4.1 The Geometry of Space in Prerelativity Physics -- General and Special Covariance -- 4.2 Special Relativity -- 4.3 General Relativity -- 4.4 Linearized Gravity: The Newtonian Limit and Gravitational Radiation -- 5. Homogeneous, Isotropic Cosmology -- 5.1 Homogeneity and Isotrophy -- 5.2 Dynamics of a Homogeneous, Isotropic Universe -- 5.3 The Cosmological Redshift -- Horizons -- 5.4 The Evolution of Our Universe -- 6. The Schwartzschild Solution.