Introduction to the analysis of normed linear spaces /
[Book]
J.R. Giles
New York :
Cambridge University Press,
2000
xiv, 280 pages :
illustrations ;
23 cm
Australian mathematical society lecture series ;
13
Includes bibliographical references and index
Ch. 1. Normed Linear Space Structure and Examples -- 1. Basic properties of normed linear spaces -- 2. Classes of example spaces -- 3. Orthonormal sets in inner product spaces -- Ch. II. Spaces of Continuous Linear Mappings -- 4. Norming mappings and forming duals and operator algebras -- 5. The shape of the dual -- Ch. III. The Existence of Continuous Linear Functionals -- 6. The Hahn-Banach Theorem -- 7. The natural embedding and reflexivity -- 8. Subreflexivity -- Ch. IV. The Fundamental Mapping Theorems for Banach Spaces -- 9. Baire category theory for metric spaces -- 10. The Open Mapping and Closed Graph Theorems -- 11. The Uniform Boundedness Theorem -- Ch. V. Types of Continuous Linear Mappings -- 12. Conjugate mappings -- 13. Adjoint operators on Hilbert space -- 14. Projection operators -- 15. Compact operators -- Ch. VI. Spectral Theory -- 16. The spectrum -- 17. The spectrum of a continuous linear operator -- 18. The spectrum of a compact operator -- 19. The Spectral Theorem for compact normal operators on Hilbert space -- 20. The Spectral Theorem for compact operators on Hilbert space -- App. A.1. Zorn's Lemma -- App. A.2. Numerical equivalence -- App. A.3. Hamel basis