Christopher Apelian, Steve Surace ; with Akhil Mathew.
Boca Raton, FL :
Chapman & Hall/CRC,
c2010.
xix, 547 p. :
ill. ;
25 cm.
Monographs and textbooks in pure and applied mathematics ;
294.
Includes bibliographical references (p. 537-538) and index.
Spaces R, Rk, and C -- Point-set topology -- Limits and convergence -- Functions: definitions and limits -- Functions: continuity and convergence -- The Derivative -- Real integration -- Complex integration -- Taylor Series, Laurent Series, and the Residue Calculus -- Complex functions as mappings.
0
"Unlike other undergraduate-level texts, Real and complex analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA's 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book's website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks--one for real function theory and one for complex function theory."--Publisher's description.