• الرئیسیة
  • البحث المتقدم
  • قائمة المکتبات
  • حول الموقع
  • اتصل بنا
  • نشأة

عنوان
An introduction to statistical learning :

پدید آورنده
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

موضوع
Mathematical models, Problems, exercises, etc.,Mathematical models.,Mathematical statistics, Problems, exercises, etc.,Mathematical statistics.,R (Computer program language),Statistics.,Models, Statistical.,Statistics as Topic.

رده
QA276
.
I58
2015

کتابخانه
کتابخانه مطالعات اسلامی به زبان های اروپایی

محل استقرار
استان: قم ـ شهر: قم

کتابخانه مطالعات اسلامی به زبان های اروپایی

تماس با کتابخانه : 32910706-025

1461471370
1461471389
9781461471370
9781461471387

dltt

An introduction to statistical learning :
[Book]
with applications in R /
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

[Corrected at sixth printing 2015].

xiv, 426 pages :
illustrations (chiefly color) ;
25 cm.

Springer texts in statistics,
103.
1431-875X ;

Includes index.

Introduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Unsupervised learning.
0

"An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. Provides tools for Statistical Learning that are essential for practitioners in science, industry and other fields. Analyses and methods are presented in R. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering. Extensive use of color graphics assist the reader"--Publisher description.

Statistical learning

Mathematical models, Problems, exercises, etc.
Mathematical models.
Mathematical statistics, Problems, exercises, etc.
Mathematical statistics.
R (Computer program language)
Statistics.
Models, Statistical.
Statistics as Topic.

519
.
5
23

QA276
.
I58
2015

QA276
.
I58
2015

Hastie, Trevor
James, Gareth, (Gareth Michael)
Tibshirani, Robert
Witten, Daniela

20210107123416.0
rda

 مطالعه متن کتاب 

[Book]
270410

Y

الاقتراح / اعلان الخلل

تحذیر! دقق في تسجیل المعلومات
ارسال عودة
تتم إدارة هذا الموقع عبر مؤسسة دار الحديث العلمية - الثقافية ومركز البحوث الكمبيوترية للعلوم الإسلامية (نور)
المكتبات هي المسؤولة عن صحة المعلومات كما أن الحقوق المعنوية للمعلومات متعلقة بها
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال