Design, control and application of modular multilevel converters for HVDC transmission systems /
[Book]
Kamran Sharifabadi Research & Technology, Statoil ASA, Norway, Lennart Harnefors, ABB Corporate Research, Sweden Hans-Peter Nee School of Electrical Engineering, KTH Royal Institute of Technology, Sweden, Staffan Norrga, School of Electrical Engineering, KTH Royal Institute of Technology, Sweden, Remus Teodorescu, Department of Energy Technology, Aalborg University, Denmark
1608
1 online resource
Includes bibliographical references and index
Cover; Title Page; Copyright; Contents; Preface; Acknowledgements; About the Companion Website; Nomenclature; Introduction; Chapter 1 Introduction to Modular Multilevel Converters; 1.1 Introduction; 1.2 The Two-Level Voltage Source Converter; 1.2.1 Topology and Basic Function; 1.2.2 Steady-State Operation; 1.3 Benefits of Multilevel Converters; 1.4 Early Multilevel Converters; 1.4.1 Diode Clamped Converters; 1.4.2 Flying Capacitor Converters; 1.5 Cascaded Multilevel Converters; 1.5.1 Submodules and Submodule Strings; 1.5.2 Modular Multilevel Converter with Half-Bridge Submodules
1.5.3 Other Cascaded Converter Topologies1.6 Summary; References; Chapter 2 Main-Circuit Design; 2.1 Introduction; 2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications; 2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors; 2.2.2 Basic Conduction Properties of Power Semiconductor Devices; 2.2.3 P-N Junctions for Blocking; 2.2.4 Conduction Properties and the Need for Carrier Injection; 2.2.5 Switching Properties; 2.2.6 Packaging; 2.2.7 Reliability of Power Semiconductor Devices; 2.2.8 Silicon Carbide Power Devices
2.3 Medium-Voltage Capacitors for Submodules2.3.1 Design and Fabrication; 2.3.2 Self-Healing and Reliability; 2.4 Arm Inductors; 2.5 Submodule Configurations; 2.5.1 Existing Half-Bridge Submodule Realizations; 2.5.2 Clamped Single-Submodule; 2.5.3 Clamped Double-Submodule; 2.5.4 Unipolar-Voltage Full-Bridge Submodule; 2.5.5 Five-Level Cross-Connected Submodule; 2.5.6 Three-Level Cross-Connected Submodule; 2.5.7 Double Submodule; 2.5.8 Semi-Full-Bridge Submodule; 2.5.9 Soft-Switching Submodules; 2.6 Choice of Main-Circuit Parameters; 2.6.1 Main Input Data
2.6.2 Choice of Power Semiconductor Devices2.6.3 Choice of the Number of Submodules; 2.6.4 Choice of Submodule Capacitance; 2.6.5 Choice of Arm Inductance; 2.7 Handling of Redundant and Faulty Submodules; 2.7.1 Method 1; 2.7.2 Method 2; 2.7.3 Comparison of Method 1 and Method 2; 2.7.4 Handling of Redundancy Using IGBT Stacks; 2.8 Auxiliary Power Supplies for Submodules; 2.8.1 Using the Submodule Capacitor as Power Source; 2.8.2 Power Supplies with High-Voltage Inputs; 2.8.3 The Tapped-Inductor Buck Converter; 2.9 Start-Up Procedures; 2.10 Summary; References; Chapter 3 Dynamics and Control
3.1 Introduction3.2 Fundamentals; 3.2.1 Arms; 3.2.2 Submodules; 3.2.3 AC Bus; 3.2.4 DC Bus; 3.2.5 Currents; 3.3 Converter Operating Principle and Averaged Dynamic Model; 3.3.1 Dynamic Relations for the Currents; 3.3.2 Selection of the Mean Sum Capacitor Voltages; 3.3.3 Averaging Principle; 3.3.4 Ideal Selection of the Insertion Indices; 3.3.5 Sum-Capacitor-Voltage Ripples; 3.3.6 Maximum Output Voltage; 3.3.7 DC-Bus Dynamics; 3.3.8 Time Delays; 3.4 Per-Phase Output-Current Control; 3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller
0
8
8
8
8
Design, control and application of modular multilevel converters for HVDC transmission systems
9781118851562
Electric current converters-- Automatic control.
Electric current converters-- Design and construction.
Electric power transmission-- Direct current-- Equipment and supplies.