2.3.1 p-Doping of SWCNTs with Halogens -- 2.3.2 p-Doping with Acceptor Molecules -- 2.3.3 p-Doping of SWCNTs with FeCl3_ -- 2.3.4 p-Doping of SWCNTs with SOCl2_ -- 2.3.5 p-Doping of SWCNTs with Acids -- 2.3.6 p-Doping of SWCNTs with Superacids -- 2.3.7 p-Doping with other Oxidizing Agents -- 2.3.8 Diameter Selective Doping -- 2.4 Practical Applications of Doped Nanotubes -- 2.5 Conclusions, Perspectives -- References -- 3 Functionalized Carbon Nanotubes (X-CNTs) -- Ste;phane Campidelli, Stanislaus S. Wong and Maurizio Prato -- 3.1 Introduction -- 3.2 Functionalization Routes -- 3.2.1 Noncovalent Sidewall Functionalization of SWCNTs -- 3.2.2 Covalent Functionalization of SWCNTs -- 3.3 Properties and Applications -- 3.3.1 Electron Transfer Properties and Photovoltaic Applications -- 3.3.2 Chemical Sensors (FET-Based) -- 3.3.3 Opto-Electronic Devices (FET-Based) -- 3.3.4 Biosensors -- 3.4 Conclusion -- References -- 4 Decorated (Coated) Carbon Nanotubes (X/CNTs) -- Revathi R. Bacsa and Philippe Serp
4.1 Introduction -- 4.2 Metal-Nanotube Interactions: Theoretical Aspects -- 4.2.1 Curvature-Induced Effects -- 4.2.2 Effect of Defects and Vacancies -- on the Metal-Graphite Interactions -- 4.3 Carbon Nanotube Surface Activation -- 4.4 Methods for Carbon Nanotube Coating -- 4.4.1 Deposition from Solution -- 4.4.2 Self-Assembly Methods -- 4.4.3 Electro- and Electrophoretic Deposition -- 4.4.4 Deposition from Gas Phase -- 4.4.5 Nanoparticles Decorating Inner Surfaces -- of Carbon Nanotubes -- 4.5 Characterization of Decorated Nanotubes -- 4.5.1 Electron Microscopy and X-ray Diffraction -- 4.5.2 Spectroscopic Methods -- 4.5.3 Porosity and Surface Area -- 4.6 Applications of Decorated Nanotubes -- 4.6.1 Sensors -- 4.6.2 Catalysis -- 4.6.3 Fuel Cells -- 4.6.4 Hydrogen Storage -- 4.7 Decorated Nanotubes in Biology and Medicine -- 4.8 Conclusions and Perspectives -- References -- 5 Filled Carbon Nanotubes -- 5.1 Presentation of Chapter 5 -- 5 a Filled Carbon Nanotubes: (X@CNTs) -- Jeremy Sloan and Marc Monthioux -- 5 a.1 Introduction -- 5 a.2 Synthesis of X@CNTs -- 5 a.2.1 A Glimpse at the Past -- 5 a.2.2 The Expectations with Filling CNTs -- 5 a.2.3 Filling Parameters, Routes and Mechanisms -- 5 a.2.4 Materials for Filling -- 5 a.2.5 Filling Mechanisms -- 5 a.3 Behaviours and Properties -- 5 a.3.1 Peculiar in-Tube Behaviour (Diffusion, Coalescence, Crystallization) -- 5 a.3.2 Electronic Properties (Transport, Magnetism and Others)
5 a.4 Applications (Demonstrated or Expected) -- 5 a.4.1 Applications that Make Use of Mass -- Transport Properties -- 5 a.4.2 Applications Arising as a Result of Filling -- Acknowledgements -- References -- 5 b Fullerenes inside Carbon Nanotubes: The Peapods -- F. Simon and Marc Monthioux -- 5 b.1 Introduction -- 5 b.2 The Discovery of Fullerene Peapods -- 5 b.3 Classification of Peapods -- 5 b.4 Synthesis and Behavior of Fullerene Peapods -- 5 b.4.1 Synthesis of Peapods -- 5 b.4.2 Behavior of Peapods under Various Treatments -- 5 b.5 Properties of Peapods -- 5 b.5.1 Structural Properties -- 5 b.5.2 Peapod Band Structure from Theory and Experiment -- 5 b.5.3 Transport Properties -- 5 b.5.4 Optical Properties -- 5 b.5.5 Vibrational Properties -- 5 b.5.6 Magnetic Properties -- 5 b.6 Applications of Peapods -- 5 b.6.1 Demonstrated Applications -- 5 b.6.2 Expected Applications -- Acknowledgements -- References -- 6 Heterogeneous Nanotubes (X*CNTs, X*BNNTs) -- Dmitri Golberg, Mauricio Terrones
6.1 Overall Introduction -- 6.2 Pure BN Nanotubes -- 6.2.1 Introduction -- 6.2.2 Synthesis of BN Nanotubes -- 6.2.3 Morphology and Structure of BN Nanotubes -- 6.2.4 Properties of BN Nanotubes -- 6.2.5 Stability of BN Nanotubes to High-Energy Irradiation -- 6.2.6 Boron Nitride Meta-Nanotubes -- 6.2.7 Other BN Nanomaterials -- 6.2.8 Challenging Applications -- 6.3 BxCyNz_Nanotubes and Nanofibers -- 6.3.1 Tuning the Electronic Structure -- with C-Substituted BN Nanotubes -- 6.3.2 Production and Characterization of BxCyNz -- Nanotubes and Nanofibers -- 6.4 B-Substituted or N-Substituted Carbon Nanotubes -- 6.4.1 Substituting Carbon Nanotubes with B or N -- 6.4.2 Synthesis Strategies for Producing Bor -- N-Substituted CNTs -- 6.4.3 Morphology and Structure of Substituted CNTs -- 6.4.4 Properties of Substituted CNTs -- 6.4.5 Applications of Substituted CNTs -- 6.5 Perspectives and Future Outlook -- Acknowledgements -- References -- Index
List of Contributors -- Foreword -- List of Abbreviations -- Acknowledgements -- Introduction to the Meta-Nanotube Book 1 -- Marc Monthioux -- 1 Time for a Third-Generation of Carbon Nanotubes -- 2 Introducing Meta-Nanotubes -- 2.1 Doped Nanotubes (X:CNTs) -- 2.2 Functionalized Nanotubes (X-CNTs) -- 2.3 Decorated (Coated) Nanotubes (X /CNTs) -- 2.4 Filled Nanotubes (X@CNTs) -- 2.5 Heterogeneous Nanotubes (X*CNTs) -- 3 Introducing the Meta-Nanotube Book 4 -- References -- 1 Introduction to Carbon Nanotubes -- Marc Monthioux -- 1.1 Introduction -- 1.2 One Word about Synthesizing Carbon Nanotubes -- 1.3 SWCNTs: The Perfect Structure -- 1.4 MWCNTs: The Amazing (Nano)Textural Variety -- 1.5 Electronic Structure -- 1.6 Some Properties of Carbon Nanotubes -- 1.7 Conclusion -- References -- 2 Doped Carbon Nanotubes: (X:CNTs) -- Alain Pe;nicaud, Pierre Petit and John E. Fischer -- 2.1 Introduction -- 2.1.1 Scope of this Chapter 41 -- 2.1.2 A Few Definitions -- 2.1.3 Doped/Intercalated Carbon Allotropes: a Brief History -- 2.1.4 What Happens upon Doping SWCNTs? -- 2.2 n-Doping of Nanotubes -- 2.2.1 Synthetic Routes for Preparing Doped SWCNTs -- 2.2.2 Crystalline Structure and Chemical -- Composition of n-Doped Nanotubes -- 2.2.3 Modification of the Electronic Structure -- of SWCNTs upon Doping -- 2.2.4 Electrical Transport in Doped SWCNTs -- 2.2.5 Spectroscopic Evidence for n-Doping -- 2.2.6 Solutions of Reduced Nanotubes -- 2.3 p-Doping of Carbon Nanotubes
0
0
0
0
0
"The book will present different chapters corresponding to each of the meta-nanotube categories. There will be an introductory chapter that will provide the basics of what is needed to be known about pristine nanotubes to understand what is in the subsequent chapters. Each of the chapters that follow the introductory chapter will cover aspects from synthesis to applications, characterization, behavior, properties, and mechanisms. These chapters will focus on heterogeneous nanotubes, doped nanotubes, functionalized nanotubes, coated nanotubes and hybrid nanotubes, respectively, and will be followed by a final concluding chapter"--