Machine generated contents note: ch. 1 Generating Energy Becomes Personal -- 1.1.Forget Batteries, Let a T-Shirt Power Your Smartphone -- 1.1.1.Self-Powered Smartwear -- 1.1.2.Cotton T-Shirts As Batteries -- 1.1.3.Graphene Yarns Turn Textiles into Supercapacitors -- 1.1.4.Silky Substrate Makes Flexible Solar Cells Biocompatible -- 1.1.5.Folding Origami Batteries -- 1.1.6.Towards Self-Powered Electronic Papers -- 1.1.7.Light-Driven Bioelectronic Implants Don't Need Batteries -- 1.1.8.A Stretchable Far-Field Communication Antenna for Wearable Electronics -- 1.1.9.Reversibly Bistable Materials Could Revolutionize Flexible Electronics -- 1.1.10.Nanogenerators for Large-Scale Energy Harvesting -- 1.2.A Much More Sophisticated Way to Tap into the Sun's Energy -- 1.2.1.Solar Cell Textiles -- 1.2.2.Complete Solar Cells Printed by Inkjet -- 1.2.3.Solar Paint Paves the Way for Low-Cost Photovoltaics -- 1.2.4.Paper Solar Cells -- 1.2.5.Recharging Wearable Textile Battery by Sunlight --
Note continued: 3.1.2.A Design Guide to Self-Assemble Nanoparticles into Exotic Superstructures -- 3.1.3.3D Nanopatterning with Memory-Based, Sequential Wrinkling -- 3.1.4.Spraying Light -- the Fabrication of Light-Emitting 3D Objects -- 3.1.5.Microfabrication Inspired by LEGO[™] -- 3.1.6.Atomic Calligraphy -- 3.1.7.Complex Assemblies Based on Micelle-Like Nanostructures -- 3.1.8.Precise Manipulation of Single Nanoparticles with E-Beam Tweezers -- 3.1.9.Trapping Individual Metal Nanoparticles in Air -- 3.1.10.Plant Viruses Assist with Building Nanoscale Devices -- 3.1.11.Sculpting 3D Silicon Structures at the Single Nanometer Scale -- 3.1.12.Probing the Resolution Limits of Electron-Beam Lithography -- 3.1.13.Foldable Glass -- 3.1.14.Plasmonic Biofoam Beats Conventional Plasmonic Surfaces -- 3.1.15.Nanotechnology in a Bubble -- 3.1.16.Self-Assembly Machines -- A Vision for the Future of Manufacturing -- 3.2.Nanotechnology and 3D Printing --
Note continued: 3.2.1.Getting Closer to 3D Nanoprinting -- 3.2.2.The Emergence of 3D-Printed Nanostructures -- 3.2.3.Printing in Three Dimensions with Graphene -- 3.2.4.Fully 3D-Printed Quantum Dot LEDs to Fit a Contact Lens -- 3.2.5.3D-Printed Programmable Release Capsules -- 3.2.6.Embedded 3D-Printing for Soft Robotics Fabrication -- References -- ch. 4 The Future is Flat -- Two-Dimensional Nanomaterials -- 4.1.Graphene -- 4.1.1.New Synthesis Method for Graphene Using Agricultural Waste -- 4.1.2.Inkjet Printing of Graphene -- 4.1.3.Graphene from Fingerprints -- 4.1.4.Graphene Laminate Drastically Changes Heat Conduction of Plastic Materials -- 4.1.5.Graphene Quantum Dot Band-Aids Disinfect Wounds -- 4.1.6.A Nanomotor that Mimics an Internal Combustion Engine -- 4.1.7.The Most Effective Material for EMI Shielding -- 4.1.8.Eavesdropping on Cells with Graphene Transistors -- 4.1.9.Graphene Beats Polymer Coatings in Preventing Microbially-Induced Corrosion --
Note continued: 4.1.10.Janus Separator: A New Opportunity to Improve Lithium-Sulfur Batteries -- 4.2.Beyond Graphene -- 4.2.1.MAX Phases Get Two-Dimensional as Well -- 4.2.2.Transistor Made from A11-2D Materials -- 4.2.3.Novel Mono-Elemental Semiconductors: Arsenene and Antimonene Join 2D Family -- 4.2.4.Vanadium Disulfide -- A Monolayer Material for Li-Ion Batteries -- 4.2.5.Chemically Enhanced 2D Material Makes Excellent Tunable Nanoscale Light Source -- References -- ch. 5 The Medicine Man of the future is Tiny -- 5.1.Honey, I Swallowed the Doctor -- 5.1.1.Magnetic Nanovoyagers in Human Blood -- 5.1.2.Microrobots to Deliver Drugs on Demand -- 5.1.3.First Demonstration of Micromotor Operation in a Living Organism -- 5.1.4.Multiplexed Planar Array Analysis from Within a Living Cell -- 5.1.5.Self-Powered Micropumps Respond to Glucose Levels -- 5.1.6.Sneaking Drugs into Cancer Cells -- 5.1.7.Nanoparticle-Corked Nanotubes as Drug Delivery Vehicles --
Note continued: 5.1.8.Plasmonic Nanocrystals for Combined Photothermal and Photodynamic Cancer Therapies -- 5.1.9.Remotely Activating Biological Materials with Nanocomposites -- 5.1.10.Pre-Coating Nanoparticles to Better Deal with Protein Coronas -- 5.2.Sensors and Nanoprobes for Everything -- Down to Single Molecules -- 5.2.1.A Quick and Simple Blood Test to Detect Early-Stage Cancer -- 5.2.2.Nanoparticles Allow Simple Monitoring of Circulating Cancer Cells -- 5.2.3.Multiplexing Biosensors on a Chip for Human Metabolite Detection -- 5.2.4.Multimodal Biosensor Integrates Optical, Electrical, and Mechanical Signals -- 5.2.5.Detecting Damaged DNA with Solid-State Nanopores -- 5.2.6.Wearable Graphene Strain Sensors Monitor Human Vital Signs -- 5.2.7.Biosensor Detects Biomarkers for Parkinson's Disease -- 5.2.8.Breath Nanosensors for Diagnosis of Diabetes -- 5.2.9.Ultrafast Sensor Monitors You While You Speak -- 5.2.10.Detecting Flu Viruses in Exhaled Breath --
Note continued: 5.2.11.Nanosensor for Advanced Cancer Biomarker Detection -- 5.2.12.Optical Detection of Epigenetic Marks -- 5.2.13.Nanosensor Tattoo on Teeth Monitors Bacteria in Your Mouth -- 5.2.14.Tracking Nanomedicines Inside the Body -- 5.2.15.Measuring Femtoscale Displacement for Photoacoustic Spectroscopy -- 5.2.16.Reduced Graphene Oxide Platform Shows Extreme Sensitivity to Circulating Tumor Cells -- 5.3.Analyzing and Manipulating Single Cells Becomes Possible -- 5.3.1.Untethered Active Microgripper for Single-Cell Analysis -- 5.3.2.New Technique Precisely Determines Nanoparticle Uptake into Individual Cells -- 5.3.3.Optical Sensor Detects Single Cancer Cells -- 5.3.4.Catch and Release of Individual Cancer Cells -- 5.3.5.Sensing of Single Malaria-Infected Red Blood Cells -- 5.3.6.Novel Mechanobiological Tool for Probing the Inner Workings of a Cell -- 5.3.7.Snail-Inspired Nanosensor Detects and Maps mRNA in Living Cells --
Note continued: 5.3.8.Silicon Chips Inserted into Living Cells Can Feel the Pressure -- 5.3.9.Direct Observation of How Nanoparticles Interact with the Nucleus of a Cancer Cell -- 5.3.10.A Precise Nanothermometer for Intracellular Temperature Mapping -- 5.3.11.Direct Observation of Drug Release from Carbon Nanotubes in Living Cells -- 5.3.12.Functionalizing Living Cells -- 5.4.A Glimpse at the Numerous Benefits that Nanomedicine Has in Store for Us -- 5.4.1.High-Tech Band-Aids -- 5.4.2.Surface-Modified Nanocellulose Hydrogels for Wound Dressing -- 5.4.3.Curcumin Nanoparticles as Innovative Antimicrobial and Wound Healing Agents -- 5.4.4.Multifunctional RNA Nanoparticles to Combat Cancer and Viral Infections -- 5.4.5.Replacing Antibiotics with Graphene-Based Photothermal Agents -- 5.4.6.Nanotechnology Against Acne -- 5.4.7.Biofunctionalized Silk Nanofibers Repair the Optic Nerve -- 5.4.8.Move Over Chips -- Here Come Multifunctional Labs on a Single Fiber --
Note continued: 5.4.9.Nanoparticles Accelerate and Improve Healing of Burn Wounds -- 5.4.10.A Nanoparticle-Based Alternative to Viagra -- 5.4.11.Light-Triggered Local Anesthesia -- 5.4.12.Toward Next-Generation Nanomedicines for Cancer Therapy -- References -- ch. 6 A Foray into the Multifaceted World of Nanotechnologies -- 6.1.Nanorobotics -- Motors and Machines at the Nanoscale -- 6.1.1.A Nanorobotics Platform for Nanomanufacturing -- 6.1.2.Graphene-Based Biomimetic Soft Robotics Platform -- 6.1.3.How to Switch a Nanomachine On and Off -- 6.1.4.Understanding Springs at the Nanoscale -- 6.1.5.Fast Molecular Cargo Transport by Diffusion -- 6.1.6.Micro- and Nanomotors Powered Solely by Water -- 6.1.7.Self-Propelled Microrockets Detect Dangerous Bacteria -- 6.1.8.Repair Nanobots on Damage Patrol -- 6.2.Inspired by Nature, the Greatest Nanotechnologist of All -- 6.2.1.Smart Materials Become "Alive" with Living Bacteria in Supramolecular Assemblies --
Note continued: 6.2.2.From Squid Protein to Bioelectronic Applications -- 6.2.3.An Octopus Might Point the Way to Stealth Coatings -- 6.2.4.Battery Parts Grown on a Rice Field -- 6.2.5.Turning Trash into Treasure -- Bioinspired Colorimetric Assays -- 6.2.6.Flesh-Eating Fungus Produces Cancer-Fighting Nanoparticles -- 6.2.7.Upconverting Synthetic Leaf Takes Its Cues from Nature -- 6.2.8.Replicating Nacre Through Nanomimetics -- 6.3.DNA Nanotechnology -- 6.3.1.DNA-Templated Nanoantenna Captures and Emits Light One Photon at a Time -- 6.3.2.DMA Nanopyramids Detect and Combat Bacterial Infections -- 6.3.3.3D-Printed "Smart Glue" Leverages DNA Assembly at the Macroscale -- 6.3.4.DNA Origami Nanorobot with a Switchable Flap -- 6.3.5.Fuzzy and Boolean Logic Gates Based on DNA Nanotechnology -- 6.4.Sensors for Everything, Everywhere -- 6.4.1.Cheap Paper-Based Gas Sensors -- 6.4.2.Plasmonic Smart Dust to Probe Chemical Reactions -- 6.4.3.A Human-Like Nanobioelectronic Tongue --
Note continued: 6.4.4.Electronic Sensing with Your Fingertips -- 6.4.5.Electronic Skin Takes Your Temperature -- 6.4.6.Nanocurve-Based Sensor Reads Facial Expressions -- 6.4.7.Selective Gas Sensing with Pristine Graphene -- 6.4.8.Detecting Single Nanoparticles and Viruses with a Smartphone -- 6.4.9.Smartphone Nano-Biosensors for Early Detection of Tuberculosis -- 6.4.10.One-Step Detection of Pathogens and Viruses with High Sensitivity -- 6.4.11.A Nanosensor for One-Step Detection of Bisphenol A -- 6.4.12.Optical Sensor Platform Based on Nanopaper -- 6.4.13.Ultrahigh-Resolution Digital Image Sensor Achieves Pixel Size of 50 Nanometers -- 6.5.Metamaterials -- 6.5.1.Topological Transitions in Metamaterials for More Efficient Solar Cells, Sensors, and LEDs -- 6.5.2.New Cloaking Material Hides Objects Otherwise Visible to the Human Eye -- 6.5.3.The Thinnest Possible Invisibility Cloak -- 6.5.4.Novel Nanosphere Lithography to Fabricate Tunable Plasmonic Metasurfaces --
Note continued: 6.6.Nanotechnology Research Knows No Boundaries -- 6.6.1.Superlubricity -- 6.6.2.Microfluidics Without Channels and Troughs -- 6.6.3.Truly Blond -- Hair As a Nanoreactor to Synthesize Gold Nanoparticles -- 6.6.4.A Virus-Sized Laser -- 6.6.5.High-Resolution Holograms with Nanoscale Pixels -- 6.6.6.Exploring the Complexity of Nanomaterial/Neural Interfaces -- 6.6.7.Skin-Inspired Haptic Memory Devices -- 6.6.8.Light-Emitting Nanofibers Shine the Way for Optoelectronic Textiles -- 6.6.9.Protecting Satellite Electronics with Reinforced Carbon Nanotube Films -- 6.6.10.A Nanoscale Color Filter -- 6.6.11.Self-Healing Hybrid Gel System -- 6.6.12.Nanowire Structures Lead to White-Light and AC-Operated LEDs -- 6.6.13.Spiders Inspire Better Adhesives for High-Humidity Environments -- 6.6.14.Studying Phase Transformations of a Single Nanoparticle at the Atomic Level -- References -- ch. 7 Nanotechnology to the Rescue -- Environmental Applications --
Note continued: 7.1.A Simple Test Kit for the Detection of Nanoparticles -- 7.2.Low-Cost Nanotechnology Water Filter -- 7.3.Carbon Nanotube Ponytail Cleanser -- 7.4.Just Shake It! A Simple Way to Remove Nanomaterial Pollutants from Water -- 7.5.The Challenge of Testing Nanomaterial Ecotoxicity in Aquatic Environments -- 7.6.Water Quality Testing with Artificial "Microfish" -- 7.7.Microscale Garbage Trucks -- 7.7.1.About Fenton Reactions -- 7.8.Nanomaterials that Capture Nerve Agents -- 7.9.Replacing Chemical Disinfectants with Engineered Water Nanostructures -- 7.10.Nanotechnology Could Make Battery Recycling Economically Attractive -- 7.11.Bioinspired Nanofur Reduces Underwater Drag of Marine Vessels -- 7.12.Risk-Ranking Tool for Nanomaterials.