Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.1.1. Electric Machine Drive System -- 1.1.2. Trend of Development of Electric Machine Drive System -- 1.1.3. Trend of Development of Power Semiconductor -- 1.1.4. Trend of Development of Control Electronics -- 1.2. Basics of Mechanics -- 1.2.1. Basic Laws -- 1.2.2. Force and Torque -- 1.2.3. Moment of Inertia of a Rotating Body -- 1.2.4. Equations of Motion for a Rigid Body -- 1.2.5. Power and Energy -- 1.2.6. Continuity of Physical Variables -- 1.3. Torque Speed Curve of Typical Mechanical Loads -- 1.3.1. Fan, Pump, and Blower -- 1.3.2. Hoisting Load; Crane, Elevator -- 1.3.3. Traction Load (Electric Vehicle, Electric Train) -- 1.3.4. Tension Control Load -- Problems -- References -- 2. Basic Structure and Modeling of Electric Machines and Power Converters -- 2.1. Structure and Modeling of DC Machine -- 2.2. Analysis of Steady-State Operation -- 2.2.1. Separately Excited Shunt Machine -- 2.2.2. Series Excited DC Machine -- 2.3. Analysis of Transient State of DC Machine -- 2.3.1. Separately Excited Shunt Machine -- 2.4. Power Electronic Circuit to Drive DC Machine -- 2.4.1. Static Ward-Leonard System -- 2.4.2. Four-Quadrants Chopper System -- 2.5. Rotating Magnetic Motive Force -- 2.6. Steady-State Analysis of a Synchronous Machine -- 2.7. Linear Electric Machine -- 2.8. Capability Curve of Synchronous Machine -- 2.8.1. Round Rotor Synchronous Machine with Field Winding -- 2.8.2. Permanent Magnet Synchronous Machine -- 2.9. Parameter Variation of Synchronous Machine -- 2.9.1. Stator and Field Winding Resistance -- 2.9.2. Synchronous Inductance -- 2.9.3. Back EMF Constant -- 2.10. Steady-State Analysis of Induction Machine -- 2.10.1. Steady-State Equivalent Circuit of an Induction Machine -- 2.10.2. Constant Air Gap Flux Operation -- 2.11. Generator Operation of an Induction Machine -- 2.12. Variation of Parameters of an Induction Machine -- 2.12.1. Variation of Rotor Resistance, Rr -- 2.12.2. Variation of Rotor Leakage Inductance, Llr -- 2.12.3. Variation of Stator Resistance, Rs -- 2.12.4. Variation of Stator Leakage Inductance, Lls -- 2.12.5. Variation of Excitation Inductance, Lm -- 2.12.6. Variation of Resistance Representing Iron Loss, Rm -- 2.13. Classification of Induction Machines According to Speed-Torque Characteristics -- 2.14. Quasi-Transient State Analysis -- 2.15. Capability Curve of an Induction Machine -- 2.16.Comparison of AC Machine and DC Machine -- 2.16.1.Comparison of a Squirrel Cage Induction Machine and a Separately Excited DC Machine -- 2.16.2.Comparison of a Permanent Magnet AC Machine and a Separately Excited DC Machine -- 2.17. Variable-Speed Control of Induction Machine Based on Steady-State Characteristics -- 2.17.1. Variable Speed Control of Induction Machine by Controlling Terminal Voltage -- 2.17.2. Variable Speed Control of Induction Machine Based on Constant Air-Gap Flux (Ṽ/F) Control -- 2.17.3. Variable Speed Control of Induction Machine Based on Actual Speed Feedback -- 2.17.4. Enhancement of Constant Air-Gap Flux Control with Feedback of Magnitude of Stator Current -- 2.18. Modeling of Power Converters -- 2.18.1. Three-Phase Diode/Thyristor Rectifier -- 2.18.2. PWM Boost Rectifier -- 2.18.3. Two-Quadrants Bidirectional DC/DC Converter -- 2.18.4. Four-Quadrants DC/DC Converter -- 2.18.5. Three-Phase PWM Inverter -- 2.18.6. Matrix Converter -- 2.19. Parameter Conversion Using Per Unit Method -- Problems -- References -- 3. Reference Frame Transformation and Transient State Analysis of Three-Phase AC Machines -- 3.1.Complex Vector -- 3.2.d-q-n Modeling of an Induction Machine Based on Complex Space Vector -- 3.2.1. Equivalent Circuit of an Induction Machine at d-q-n AXIS -- 3.2.2. Torque of the Induction Machine -- 3.3.d-q-n Modeling of a Synchronous Machine Based on Complex Space Vector -- 3.3.1. Equivalent Circuit of a Synchronous Machine at d-q-n AXIS -- 3.3.2. Torque of a Synchronous Machine -- 3.3.3. Equivalent Circuit and Torque of a Permanent Magnet Synchronous Machine -- 3.3.4. Synchronous Reluctance Machine (SynRM) -- Problems -- References -- 4. Design of Regulators for Electric Machines and Power Converters -- 4.1. Active Damping -- 4.2. Current Regulator -- 4.2.1. Measurement of Current -- 4.2.2. Current Regulator for Three-Phase-Controlled Rectifier -- 4.2.3. Current Regulator for a DC Machine Driven by a PWM Chopper -- 4.2.4. Anti-Wind-Up -- 4.2.5. AC Current Regulator -- 4.3. Speed Regulator -- 4.3.1. Measurement of Speed/Position of Rotor of an Electric Machine -- 4.3.2. Estimation of Speed with Incremental Encoder -- 4.3.3. Estimation of Speed by a State Observer -- 4.3.4. PI/IP Speed Regulator -- 4.3.5. Enhancement of Speed Control Performance with Acceleration Information -- 4.3.6. Speed Regulator with Anti-Wind-Up Controller -- 4.4. Position Regulator -- 4.4.1. Proportional-Proportional and Integral (P-PI) Regulator -- 4.4.2. Feed-Forwarding of Speed Reference and Acceleration Reference -- 4.5. Detection of Phase Angle of AC Voltage -- 4.5.1. Detection of Phase Angle on Synchronous Reference Frame -- 4.5.2. Detection of Phase Angle Using Positive Sequence Voltage on Synchronous Reference Frame -- 4.6. Voltage Regulator -- 4.6.1. Voltage Regulator for DC Link of PWM Boost Rectifier -- Problems -- References -- 5. Vector Control -- 5.1. Instantaneous Torque Control -- 5.1.1. Separately Excited DC Machine -- 5.1.2. Surface-Mounted Permanent Magnet Synchronous Motor (SMPMSM) -- 5.1.3. Interior Permanent Magnet Synchronous Motor (IPMSM) -- 5.2. Vector Control of Induction Machine -- 5.2.1. Direct Vector Control -- 5.2.2. Indirect Vector Control -- 5.3. Rotor Flux Linkage Estimator -- 5.3.1. Voltage Model Based on Stator Voltage Equation of an Induction Machine -- 5.3.2. Current Model Based on Rotor Voltage Equation of an Induction Machine -- 5.3.3. Hybrid Rotor Flux Linkage Estimator -- 5.3.4. Enhanced Hybrid Estimator -- 5.4. Flux Weakening Control -- 5.4.1. Constraints of Voltage and Current to AC Machine -- 5.4.2. Operating Region of Permanent Magnet AC Machine in Current Plane at Rotor Reference Frame -- 5.4.3. Flux Weakening Control of Permanent Magnet Synchronous Machine -- 5.4.4. Flux Weakening Control of Induction Machine -- 5.4.5. Flux Regulator of Induction Machine -- Problems -- References -- 6. Position/Speed Sensorless Control of AC Machines -- 6.1. Sensorless Control of Induction Machine -- 6.1.1. Model Reference Adaptive System (MRAS) -- 6.1.2. Adaptive Speed Observer (ASO) -- 6.2. Sensorless Control of Surface-Mounted Permanent Magnet Synchronous Machine (SMPMSM) -- 6.3. Sensorless Control of Interior Permanent Magnet Synchronous Machine (IPMSM) -- 6.4. Sensorless Control Employing High-Frequency Signal Injection -- 6.4.1. Inherently Salient Rotor Machine -- 6.4.2. AC Machine with Nonsalient Rotor -- Problems -- References -- 7. Practical Issues -- 7.1. Output Voltage Distortion Due to Dead Time and Its Compensation -- 7.1.1.Compensation of Dead Time Effect -- 7.1.2. Zero Current Clamping (ZCC) -- 7.1.3. Voltage Distortion Due to Stray Capacitance of Semiconductor Switches -- 7.1.4. Prediction of Switching Instant -- 7.2. Measurement of Phase Current -- 7.2.1. Modeling of Time Delay of Current Measurement System -- 7.2.2. Offset and Scale Errors in Current Measurement -- 7.3. Problems Due to Digital Signal Processing of Current Regulation Loop -- 7.3.1. Modeling and Compensation of Current Regulation Error Due to Digital Delay -- 7.3.2. Error in Current Sampling -- Problems -- References -- Appendix A Measurement and Estimation of Parameters of Electric Machinery -- A.1. Parameter Estimation -- A.1.1. DC Machine -- A.1.2. Estimation of Parameters of Induction Machine -- A.2. Parameter Estimation of Electric Machines Using Regulators of Drive System -- A.2.1. Feedback Control System -- A.2.2. Back EMF Constant of DC Machine, K -- A.2.3.
Stator Winding Resistance of Three-Phase AC Machine, Rs -- A.2.4. Induction Machine Parameters -- A.2.5. Permanent Magnet Synchronous Machine -- A.3. Estimation of Mechanical Parameters -- A.3.1. Estimation Based on Mechanical Equation -- A.3.2. Estimation Using Integral Process -- References -- Appendix B d-q Modeling Using Matrix Equations -- B.1. Reference Frame and Transformation Matrix -- B.2.d-q Modeling of Induction Machine Using Transformation Matrix -- B.3.d-q Modeling of Synchronous Machine Using Transformation Matrix.