Machine generated contents note: 1.Terminology Related to Electrochemical DNA-Based Biosensors / Jan Labuda -- 1.1.Introduction -- 1.2.Detection Features of DNA-Based Biosensors -- 1.3.Detection of Specific DNA Interactions -- 1.3.1.DNA Hybridization Biosensors -- 1.3.2.DNA Damage -- 1.3.3.DNA Association Interactions -- 1.3.3.1.Binding of low molecular mass compounds -- 1.3.3.2.Binding of proteins -- 1.4.Conclusions -- 2.Electrochemical Aptamer-Based Biosensors / M. Mascini -- 2.1.Introduction -- 2.2.Electrochemical Detection Strategies Based on Labeling -- 2.3.Electrochemical Aptasensors Based on a Sandwich Assay -- 2.4.Electrochemical Aptasensors Based on a Competitive Assay -- 2.5.Electrochemical Aptasensors Based on a Direct Assay -- 2.6.Electrochemical Metal Nanoparticle-Labeled Aptasensors -- 2.7.Electrochemical Aptasensors Based on Noncovalent Redox Species Label -- 2.8.Electrochemical Aptasensors Based on the Aptamer Conformational Changes --
Note continued: 10.4.1.1.Polypyrroles -- 10.4.1.2.Polyaniline -- 10.4.1.3.Polythiophene and its derivatives -- 10.4.2.Redox Polymers -- 10.4.2.1.Quinone-containing polymers -- 10.4.2.2.Redox-active polymers containing organometalic redox center -- 10.4.3.Nonconducting Polymers -- 10.5.Conclusions -- 11.Electrochemical Transducer for Oligonucleotide Biosensor Based on the Elimination and Adsorptive Transfer Techniques / Mehmet Ozsoz -- 11.1.Introduction -- 11.2.Theoretical Fundamentals of Elimination Voltammetry with Linear Scan (EVLS) -- 11.2.1.Elimination Functions -- 11.2.2.EVLS of Adsorbed Species -- 11.2.3.Single and Double Mode of EVLS -- 11.3.EVLS Increasing the Transducer Potential Range -- 11.4.EVLS in Connection with Adsorptive Stripping Technique -- 11.4.1.AdS EVLS of Homo- and Hetero-oligonucleotides -- 11.4.2.AdS EVLS of Hairpins -- 11.5.EVLS of Nucleobases and Oligonucleotides in the Presence of Copper Ions --
Note continued: 11.5.1.Mercury and Mercury-Modified Electrodes -- 11.5.2.Solid Electrodes -- 11.6.Conclusions -- 12.Electrochemical DNA Biosensors for Detection of Compound-DNA Interactions / M. Ozsoz -- 12.1.Introduction -- 12.1.1.Aim of Electrochemical DNA Biosensors -- 12.2.The Structure of DNA -- 12.3.Natural Electronalytical Characterictics of DNA -- 12.4.Types of DNA Immobilization Methodologies onto Sensor Surfaces -- 12.4.1.Adsorption (Wet Adsorption/Electrostatic Accumulation) -- 12.4.2.Covalent Binding to Activated/Nonactivated Surfaces -- 12.4.3.DNA Immobilization onto Transducer Surfaces Via Avidin-Biotin Interaction -- 12.5.DNA-Compound Interactions -- 12.5.1.Types of Molecular Binding to DNA -- 12.5.1.1.Electrostatic interactions -- 12.5.1.2.Groove binding interactions -- 12.5.1.3.Intercalation mode -- 12.5.1.4.Specific binding for single-stranded DNA -- 12.5.2.Detection Techniques for Compound-DNA Binding Reactions Using Electrochemical DNA Biosensors --
Note continued: 12.5.2.1.Label-free detection based on intrinsic DNA signals (direct detection) -- 12.5.2.2.Compound-based detection (indirect redox indicator-based detection) -- 12.6.Calculations About Compound-DNA Interactions -- 12.7.Conclusions -- 13.Electrochemical Nucleic Acid Biosensors Based on Hybridization Detection for Clinical Analysis / M. Ozsoz -- 13.1.Introduction -- 13.2.Biosensors -- 13.2.1.Nucleic Acid Hybridization Biosensors -- 13.3.Electrochemical Nucleic Acid Biosensors -- 13.3.1.Label-Based Electrochemical Nucleic Acid Biosensors -- 13.3.1.1.Electrochemical genosensing by using hybridization indicator -- 13.3.1.2.Electrochemical genosensing with labeled signaling probe or labeled target DNA -- 13.3.2.Label-Free Electrochemical Genosensing -- 13.4.Conclusion -- 14.Nanomaterial-Based Electrochemical DNA Detection / Susan M. Brozik -- 14.1.Introduction -- 14.2.Nanoparticle-Based Electrochemical DNA Detection --
Note continued: 14.2.1.Nanoparticle Modification of Electrodes and Their Use as Supports for DNA Immobilization -- 14.2.2.Gold Nanoparticle Supports -- 14.2.3.Magnetic Particles -- 14.2.4.Layer-by-Layer Immobilization Techniques -- 14.2.5.Metal Nanoparticle Labels for DNA Hybridization Detection -- 14.2.5.1.Direct detection of the nanoparticle label -- 14.2.5.2.Non-stripping-based nanoparticle electrochemical DNA detection methods -- 14.3.Nanowires, Nanorods, and Nanofibers -- 14.3.1.Nanorods as Labels -- 14.3.2.Nanowires Interfaced with Electrodes as an Immobilization Matrix -- 14.3.3.Nanowire Conductance Based DNA Detection -- 14.3.4.Electrochemical Impedance Spectroscopy at Nanowires for DNA Detection -- 14.3.5.Dendrimers -- 14.3.6.Apoferritin Nanovehicles -- 14.3.7.Silica Nanoparticles -- 14.3.8.Liposomes -- 14.4.DNA Detection Using Carbon Nanotubes -- 14.4.1.Functionalization of Carbon Nanotubes with DNA -- 14.4.2.CNTs for Electrochemical DNA Sensing --
Note continued: 14.4.3.Progress toward CNT-Based Sensors for DNA Detection -- 14.5.Conclusion -- 15.Electrochemical Genosensor Assay for the Detection of Bacteria on Screen-Printed Chips / Manickam Ravichandran -- 15.1.Introduction -- 15.2.Methods for the Detection and Identification of Microorganism Utilizing Enzyme-Based Genosensors on Screen-Printed Chips -- 15.2.1.Electrochemical Genosensors for the Detection of Bacteria -- 15.2.2.Principles of Enzyme-Based PCR Amplicons Target DNA Detection Methods -- 15.2.2.1.Direct method -- 15.2.2.2.Indirect method -- 15.2.2.3.Rapid method -- 15.2.3.Screen-Printed Transducer Surface -- 15.2.3.1.Screen-printed gold chip genosensors -- 15.2.3.2.Screen-printed carbon-chip genosensors -- 15.3.Advantages of the Enzyme-Based Electrochemical Genosensors in Detecting Bacteria on Screen-Printed Carbon Chips -- 15.4.Discussions -- 15.4.Conclusions --
Note continued: 16.Introduction to Molecular Biology Related to Electrochemical DNA-Based Biosensors / Petek Ballar -- 16.1.Introduction -- 16.2.Nucleic Acids -- 16.3.Deoxyribonucleic Acid -- 16.4.DNA in Electrochemical DNA-Based Biosensors -- 16.5.Nucleic Acid Variants Used in Electrochemical DNA-Based Biosensors -- 16.5.1.Peptide Nucleic Acid (PNA) -- 16.5.2.Locked Nucleic Acid (LNA)
Note continued: 2.9.Electrochemical Aptasensors Based on Target-Induced Aptamer Displacement -- 2.10.Conclusions -- 3.Carbon-Polymer Bio-Nano-Composite Electrodes for Electrochemical Genosensing / Salvador Alegret -- 3.1.Introduction -- 3.2.Composites Materials: Main Features and Classification -- 3.3.Carbon Composites -- 3.3.1.Carbon-Based Materials as Conductive Fillers in Composites -- 3.3.2.Rigid Carbon-Polymer Composite -- 3.3.3.Graphite-Epoxy Composites -- 3.4.Electrochemical Genosensing Based on Graphite-Epoxy Composite -- 3.4.1.Electrochemical Genosensing Based on DNA Dry Adsorption on GEC as Electrochemical Transducer -- 3.4.2.Electrochemical Genosensing Based on DNA Wet Adsorption on GEC as Electrochemical Transducer -- 3.4.3.Electrochemical Genosensing Based on Graphite-Epoxy Biocomposite Modified with Avidin (Av-GEB) as Electrochemical Transducer -- 3.4.4.Electrochemical Genosensing Based on Magnetic Beads and m-GEC Electrochemical Transducer --
Note continued: 3.4.5.Electrochemical Genosensing Based on Graphite-Epoxy Composite Modified with Gold Nanoparticles (NanoAu-GEC) as Electrochemical Transducer -- 3.5.Final Remarks -- 4.Gold Nanoparticle-Based Electrochemical DNA Biosensors / Jose M. Pingarron -- 4.1.Introduction -- 4.2.Configurations Used for DNA Immobilization -- 4.2.1.Au-Thiol Binding -- 4.2.2.Gold Nanoparticles: Metallic Oxide Composites -- 4.2.3.Carbon Nanotube-Gold Nanoparticle Hybrids -- 4.2.4.Polymer-Gold Nanoparticle Hybrids -- 4.2.5.Avidin-Biotin Affinity Reactions -- 4.3.Signal Transduction and Amplification Strategies -- 4.3.1.Detection Strategies Not Involving Direct Participation of Au-NPs in the Generation of the Electrochemical Signal -- 4.3.1.1.Direct detection of redox markers -- 4.3.1.2.Detection based on enzymatic labels -- 4.3.1.3.Detection based on electrochemical labels intercalated within dsDNA -- 4.3.1.4.Detection involving the use of Au-NPs as carriers --
Note continued: 4.3.2.Detection Strategies Involving Direct Participation of Au-NPs in the Generation of the Electrochemical Signal -- 4.3.2.1.Detection based on Au-NPs' acidic or electrochemical dissolving -- 4.3.2.2.Label-free electrical detection -- 4.3.2.3.Signal enhancement methods -- 4.4.Conclusions and Outlook -- 5.Nanoparticle-Induced Catalysis for Electrochemical DNA Biosensors / Arben Merkoci -- 5.1.Introduction -- 5.2.Catalysis Induced by Gold Nanoparticles -- 5.2.1.Electrocatalytic Activity of Gold Nanoparticle Labels on Silver Deposition -- 5.2.2.Electrocatalytic Activity of Gold Nanoparticle Labels on Other Reactions -- 5.2.3.Electrocatalytic Activity of Gold Nanoparticles Used as Modifiers of Electrotransducer Surfaces -- 5.3.Catalysis Induced by Platinum and Palladium Nanoparticles -- 5.3.1.Electrocatalytic Activity of Platinum Nanoparticle Labels -- 5.3.2.Electrocatalytic Activity of Palladium Nanoparticle Labels --
Note continued: 5.4.Catalysis Induced by Other Nanoparticles -- 5.4.1.Electrocatalytic Activity of Titanium Dioxide Nanoparticle Labels -- 5.4.2.Electrocatalytic Activity of Osmium Oxide Nanoparticle Labels -- 5.4.3.Electrocatalytic Activity of Other Nanoparticles -- 5.5.Conclusions -- 6.Application of Field-Effect Transistors to Label-Free Electrical DNA Biosensor Arrays / Pedro Estrela -- 6.1.Introduction -- 6.2.Field-Effect Transistors -- 6.2.1.Field-Effect Transistor Technologies -- 6.2.1.1.Single crystalline silicon and CMOS -- 6.2.1.2.Thin-film transistors -- 6.2.2.Field-Effect Transistor Arrays -- 6.3.Field-Effect DNA Sensing -- 6.3.1.Physical Mechanisms of Detection -- 6.3.1.1.Description of the electrochemical system -- 6.3.1.2.DNA charge fraction -- 6.3.1.3.Quantitation of the field-effect device signal -- 6.3.1.4.Equivalent electrical circuit model of functionalized FET -- 6.3.2.Differential OCP Measurement -- 6.4.Electrochemical Impedance Spectroscopy --
Note continued: 6.4.1.PNA-Based Sensing -- 6.4.2.Modeling of the Signal -- 6.5.Application of FETs on Biosensor Arrays -- 6.5.1.FET-Addressed Biosensor Arrays -- 6.5.2.Specifications of the Biosensor Arrays -- 6.5.3.Development of Biosensor Arrays Based on FETs -- 6.5.4.Fabrication Technologies and Future Trends -- 6.6.Conclusions -- 7.Electrochemical Detection of Basepair Mismatches in DNA Films / Heinz-Bernhard Kraatz -- 7.1.Introduction -- 7.2.Surface Immobilization -- 7.2.1.Covalent Attachment -- 7.2.2.Adsorption -- 7.2.3.Affinity Binding -- 7.3.Detection Strategies -- 7.3.1.Direct DNA Electrochemistry -- 7.3.2.Charge Transduction Through DNA -- 7.3.3.Hybridization Indicators, Intercalators and Groove Binders -- 7.3.4.Peptide Nucleic Acids (PNA) -- 7.3.5.Protein Mediated DNA Biosensors -- 7.3.6.DNA Stem-Loops -- 7.3.6.1.Enzyme-mediated sensors -- 7.3.7.Nanoparticle-Based Sensors -- 7.3.8.Metal-Ion Amplified Sensor -- 7.3.9.Miscellaneous Methods -- 7.4.Conclusion --
Note continued: 8.Electrochemical Detection of DNA Hybridization: Use of Latex to Construct Metal-Nanoparticle Labels / Werasak Surareungchai -- 8.1.Introduction -- 8.2.Synthesis of Metal Nanoparticles -- 8.3.Use of Metal Nanoparticles as Electrochemical Labels -- 8.4.Voltammetric Detection of Metal-Nanoparticle Labels -- 8.4.1.Principles of Analytical Voltammetry -- 8.4.2.Anodic Stripping Voltammetry (ASV) -- 8.4.3.Quantification -- 8.4.3.1.Linear sweep voltammetry -- 8.4.3.2.Differential pulse voltammetry -- 8.4.3.3.Potentiometric stripping analysis -- 8.5.Latex as a Label Support -- 8.5.1.Introduction -- 8.5.2.Latex Synthesis -- 8.5.3.Latex Solution Properties -- 8.5.4.Layer-by-Layer Deposition: Theory -- 8.5.5.Layer-by-Layer Modification of Latex -- 8.5.5.1.Latex surface charge excess -- 8.6.DNA Measurement -- 8.6.1.DNA Immobilization -- 8.6.2.Probe Attachment -- 8.6.3.Detection Sequence -- 8.7.Areas for Further Research --
Note continued: 9.4.3.Genosensor for SARS Virus Detection Based on Gold Nanostructured Screen-Printed Carbon Electrode -- 9.4.3.1.Gold nanostructuration of screen-printed carbon electrodes -- 9.4.3.2.Genosensor design -- 9.4.3.3.Results -- 9.4.4.Simultaneous Detection of Streptococcus and Mycoplasma Pneumoniae Using Gold-Modified SPCEs -- 9.4.4.1.Genosensor design -- 9.4.4.2.Results -- 9.5.Conclusion -- 10.Synthetic Polymers for Electrochemical DNA Biosensors / Katarina Benikova -- 10.1.Introduction -- 10.2.Modification of Electrode Surface with Polymers -- 10.2.1.Solvent Casting -- 10.2.2.Spin Coating -- 10.2.3.Electropolymerization -- 10.3.Polymer-Assisted DNA Immobilization -- 10.3.1.Immobilization of DNA onto Polymer-Modified Electrode Surface -- 10.3.2.Immobilization of DNA Within a Polymeric Matrix by Electropolymerization -- 10.4.Application of Synthetic Polymers in DNA Biosensors -- 10.4.1.Electronically (Intrinsically) Conducting Polymers --
Note continued: 9.Screen-Printed Electrodes for Electrochemical DNA Detection / Agustin Costa-Garcia -- 9.1.Introduction -- 9.2.Fabrication of Screen-Printed Electrodes -- 9.2.1.Types of Screen-Printed Electrodes -- 9.3.Genosensors on Screen-Printed Electrodes -- 9.3.1.Electrochemical Detection of Hybridization Reaction -- 9.3.1.1.Direct transduction methods -- 9.3.1.2.Indirect transduction methods -- 9.3.2.Strategies for Immobilization of ssDNA over SPEs -- 9.3.2.1.Immobilization of ssDNA over carbon electrodes -- 9.3.2.2.Immobilization of ssDNA over gold electrodes -- 9.4.Applications -- 9.4.1.Enzymatic Genosensors on Streptavidin-Modified Screen-Printed Carbon Electrode -- 9.4.1.1.Genosensor design -- 9.4.1.2.Analytical signal recording -- 9.4.2.Alkaline Phosphatase-Catalyzed Silver Deposition for Electrochemical Detection -- 9.4.2.1.Genosensor design -- 9.4.2.2.Results --