This book introduces the concepts and methods of spatial statistics to geologists and engineers working with oil and gas data, and covers all of the most commonly encountered geostatistical methods for estimation and simulation. Topics include calculation and modeling of semivariograms, linear methods of kriging, cokriging, nonlinear methods such as indicator kriging and disjunctive kriging, and conditional simulation, including sequential indicator simulation, sequential Gaussian simulation, and simulated annealing. Semivariogram models range from very simple to complex. All of the fundamental semivariogram models are illustrated, along with anisotropic models, hole effects, geometric and zonal models, and the mechanics of fitting models. For each geostatistical method treated in detail, the author introduces necessary theory and background, describes how the method works, the steps a user must go through, and problems a user might encounter. The emphasis throughout is on what the practitioner needs to know, and the results that can be expected. The book is replete with examples in two and three dimensions, using real-world data such as porosity and permeability, gas production, structural elevation of a reservoir, and seismic information. Geostatistics and Petroleum Geology will be an invaluable advanced-level text for students on petroleum engineering and geosciences courses, as well as an important reference for petroleum geologists and petroleum engineers in oil companies worldwide.