• الرئیسیة
  • البحث المتقدم
  • قائمة المکتبات
  • حول الموقع
  • اتصل بنا
  • نشأة

عنوان
De Rham Cohomology of Differential Modules on Algebraic Varieties

پدید آورنده
by Yves André, Francesco Baldassarri.

موضوع
Geometry.,Mathematics.

رده

کتابخانه
کتابخانه مطالعات اسلامی به زبان های اروپایی

محل استقرار
استان: قم ـ شهر: قم

کتابخانه مطالعات اسلامی به زبان های اروپایی

تماس با کتابخانه : 32910706-025

9783034883368
9783034895224

b406217

De Rham Cohomology of Differential Modules on Algebraic Varieties
[Book]
by Yves André, Francesco Baldassarri.

Basel :
Imprint: Birkhäuser,
2001.

Progress in Mathematics ;
189

1 Regularity in several variables -- {sect}1 Geometric models of divisorially valued function fields -- {sect}2 Logarithmic differential operators -- {sect}3 Connections regular along a divisor -- {sect}4 Extensions with logarithmic poles -- {sect}5 Regular connections: the global case -- {sect}6 Exponents -- Appendix A: A letter of Ph. Robba (Nov. 2, 1984) -- Appendix B: Models and log schemes -- 2 Irregularity in several variables -- {sect}1 Spectral norms -- {sect}2 The generalized Poincaré-Katz rank of irregularity -- {sect}3 Some consequences of the Turrittin-Levelt-Hukuhara theorem -- {sect}4 Newton polygons -- {sect}5 Stratification of the singular locus by Newton polygons -- {sect}6 Formal decomposition of an integrable connection at a singular divisor -- {sect}7 Cyclic vectors, indicial polynomials and tubular neighborhoods -- 3 Direct images (the Gauss-Manin connection) -- {sect}1 Elementary fibrations -- {sect}2 Review of connections and De Rham cohomology -- {sect}3 Dévissage -- {sect}4 Generic finiteness of direct images -- {sect}5 Generic base change for direct images -- {sect}6 Coherence of the cokernel of a regular connection -- {sect}7 Regularity and exponents of the cokernel of a regular connection -- {sect}8 Proof of the main theorems: finiteness, regularity, monodromy, base change (in the regular case) -- Appendix C: Berthelot's comparison theorem on OXDX-linear duals -- Appendix D: Introduction to Dwork's algebraic dual theory -- 4 Complex and p-adic comparison theorems -- {sect}1 Review of analytic connections and De Rham cohomology -- {sect}2 Abstract comparison criteria -- {sect}3 Comparison theorem for algebraic vs.complex-analytic cohomology -- {sect}4 Comparison theorem for algebraic vs. rigid-analytic cohomology (regular coefficients) -- {sect}5 Rigid-analytic comparison theorem in relative dimension one -- {sect}6 Comparison theorem for algebraic vs. rigid-analytic cohomology (irregular coefficients) -- {sect}7 The relative non-archimedean Turrittin theorem -- Appendix E: Riemann's 'existence theorem' in higher dimension, an elementary approach -- References.
0

This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities).

9783034895224

Springer eBooks

Geometry.
Mathematics.

André, Yves.

Baldassarri, Francesco.

SpringerLink (Online service)

20190301080400.0

 مطالعه متن کتاب 

[Book]

Y

الاقتراح / اعلان الخلل

تحذیر! دقق في تسجیل المعلومات
ارسال عودة
تتم إدارة هذا الموقع عبر مؤسسة دار الحديث العلمية - الثقافية ومركز البحوث الكمبيوترية للعلوم الإسلامية (نور)
المكتبات هي المسؤولة عن صحة المعلومات كما أن الحقوق المعنوية للمعلومات متعلقة بها
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال